不完全信息博弈的递归蒙特卡罗搜索

T. Furtak, M. Buro
{"title":"不完全信息博弈的递归蒙特卡罗搜索","authors":"T. Furtak, M. Buro","doi":"10.1109/CIG.2013.6633646","DOIUrl":null,"url":null,"abstract":"Perfect information Monte Carlo (PIMC) search is the method of choice for constructing strong Al systems for trick-taking card games. PIMC search evaluates moves in imperfect information games by repeatedly sampling worlds based on state inference and estimating move values by solving the corresponding perfect information scenarios. PIMC search performs well in trick-taking card games despite the fact that it suffers from the strategy fusion problem, whereby the game's information set structure is ignored because moves are evaluated opportunistically in each world. In this paper we describe imperfect information Monte Carlo (IIMC) search, which aims at mitigating this problem by basing move evaluation on more realistic playout sequences rather than perfect information move values. We show that RecPIMC - a recursive IIMC search variant based on perfect information evaluation - performs considerably better than PIMC search in a large class of synthetic imperfect information games and the popular card game of Skat, for which PIMC search is the state-of-the-art cardplay algorithm.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Recursive Monte Carlo search for imperfect information games\",\"authors\":\"T. Furtak, M. Buro\",\"doi\":\"10.1109/CIG.2013.6633646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfect information Monte Carlo (PIMC) search is the method of choice for constructing strong Al systems for trick-taking card games. PIMC search evaluates moves in imperfect information games by repeatedly sampling worlds based on state inference and estimating move values by solving the corresponding perfect information scenarios. PIMC search performs well in trick-taking card games despite the fact that it suffers from the strategy fusion problem, whereby the game's information set structure is ignored because moves are evaluated opportunistically in each world. In this paper we describe imperfect information Monte Carlo (IIMC) search, which aims at mitigating this problem by basing move evaluation on more realistic playout sequences rather than perfect information move values. We show that RecPIMC - a recursive IIMC search variant based on perfect information evaluation - performs considerably better than PIMC search in a large class of synthetic imperfect information games and the popular card game of Skat, for which PIMC search is the state-of-the-art cardplay algorithm.\",\"PeriodicalId\":158902,\"journal\":{\"name\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2013.6633646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

完美信息蒙特卡罗(PIMC)搜索是构建强人工智能纸牌游戏系统的首选方法。在不完全信息博弈中,PIMC搜索通过基于状态推理的重复采样世界来评估走法,并通过求解相应的完美信息场景来估计走法值。PIMC搜索在纸牌游戏中表现良好,尽管它存在策略融合问题,即游戏的信息集结构被忽略,因为每个世界中的移动都是机会性的。在本文中,我们描述了不完全信息蒙特卡罗(IIMC)搜索,它旨在通过基于更真实的播放序列而不是完美信息移动值的移动评估来缓解这一问题。我们展示了RecPIMC——一种基于完美信息评估的递归IIMC搜索变体——在一类合成不完全信息游戏和流行的纸牌游戏Skat中表现得比PIMC搜索好得多,其中PIMC搜索是最先进的纸牌游戏算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Monte Carlo search for imperfect information games
Perfect information Monte Carlo (PIMC) search is the method of choice for constructing strong Al systems for trick-taking card games. PIMC search evaluates moves in imperfect information games by repeatedly sampling worlds based on state inference and estimating move values by solving the corresponding perfect information scenarios. PIMC search performs well in trick-taking card games despite the fact that it suffers from the strategy fusion problem, whereby the game's information set structure is ignored because moves are evaluated opportunistically in each world. In this paper we describe imperfect information Monte Carlo (IIMC) search, which aims at mitigating this problem by basing move evaluation on more realistic playout sequences rather than perfect information move values. We show that RecPIMC - a recursive IIMC search variant based on perfect information evaluation - performs considerably better than PIMC search in a large class of synthetic imperfect information games and the popular card game of Skat, for which PIMC search is the state-of-the-art cardplay algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信