看看谁没说话

Youngki Kwon, Hee-Soo Heo, Jaesung Huh, Bong-Jin Lee, Joon Son Chung
{"title":"看看谁没说话","authors":"Youngki Kwon, Hee-Soo Heo, Jaesung Huh, Bong-Jin Lee, Joon Son Chung","doi":"10.1109/SLT48900.2021.9383502","DOIUrl":null,"url":null,"abstract":"The objective of this work is speaker diarisation of speech recordings ‘in the wild’. The ability to determine speech segments is a crucial part of diarisation systems, accounting for a large proportion of errors. In this paper, we present a simple but effective solution for speech activity detection based on the speaker embeddings. In particular, we discover that the norm of the speaker embedding is an extremely effective indicator of speech activity. The method does not require an independent model for speech activity detection, therefore allows speaker diarisation to be performed using a unified representation for both speaker modelling and speech activity detection. We perform a number of experiments on in-house and public datasets, in which our method outperforms popular baselines.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Look Who’s Not Talking\",\"authors\":\"Youngki Kwon, Hee-Soo Heo, Jaesung Huh, Bong-Jin Lee, Joon Son Chung\",\"doi\":\"10.1109/SLT48900.2021.9383502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is speaker diarisation of speech recordings ‘in the wild’. The ability to determine speech segments is a crucial part of diarisation systems, accounting for a large proportion of errors. In this paper, we present a simple but effective solution for speech activity detection based on the speaker embeddings. In particular, we discover that the norm of the speaker embedding is an extremely effective indicator of speech activity. The method does not require an independent model for speech activity detection, therefore allows speaker diarisation to be performed using a unified representation for both speaker modelling and speech activity detection. We perform a number of experiments on in-house and public datasets, in which our method outperforms popular baselines.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

这项工作的目标是“在野外”记录说话人的讲话记录。确定语音片段的能力是日记系统的关键部分,占很大比例的错误。本文提出了一种简单而有效的基于说话人嵌入的语音活动检测方法。特别是,我们发现说话人嵌入的规范是一个非常有效的言语活动指标。该方法不需要独立的语音活动检测模型,因此可以使用统一的表示来执行说话人记录,用于说话人建模和语音活动检测。我们在内部和公共数据集上进行了大量实验,其中我们的方法优于流行的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Look Who’s Not Talking
The objective of this work is speaker diarisation of speech recordings ‘in the wild’. The ability to determine speech segments is a crucial part of diarisation systems, accounting for a large proportion of errors. In this paper, we present a simple but effective solution for speech activity detection based on the speaker embeddings. In particular, we discover that the norm of the speaker embedding is an extremely effective indicator of speech activity. The method does not require an independent model for speech activity detection, therefore allows speaker diarisation to be performed using a unified representation for both speaker modelling and speech activity detection. We perform a number of experiments on in-house and public datasets, in which our method outperforms popular baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信