S. Souma, M. Ogawa, Takahiro Yamamoto, Kazuyuki Watanabe
{"title":"基于自旋密度功能紧密结合法的石墨烯纳米带自旋过滤装置模拟","authors":"S. Souma, M. Ogawa, Takahiro Yamamoto, Kazuyuki Watanabe","doi":"10.1109/IWCE.2009.5091149","DOIUrl":null,"url":null,"abstract":"We study the spin filtering characteristics of the zigzag-edged graphene nanoribbon spin filtering device, applying the spin-density functional tight-binding method and the non- equilibrium Green's function method. Our simulations have shown that the spin filtering effect can be controlled by applying the side-gate voltages that effectively induce the transverse electric fields. Influence of an edge lattice vacancy on the spin- filtering effect is also discussed.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Graphene Nanoribbon Spin-Filter Device with Spin-Density Functional Tight-Binding Method\",\"authors\":\"S. Souma, M. Ogawa, Takahiro Yamamoto, Kazuyuki Watanabe\",\"doi\":\"10.1109/IWCE.2009.5091149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the spin filtering characteristics of the zigzag-edged graphene nanoribbon spin filtering device, applying the spin-density functional tight-binding method and the non- equilibrium Green's function method. Our simulations have shown that the spin filtering effect can be controlled by applying the side-gate voltages that effectively induce the transverse electric fields. Influence of an edge lattice vacancy on the spin- filtering effect is also discussed.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Graphene Nanoribbon Spin-Filter Device with Spin-Density Functional Tight-Binding Method
We study the spin filtering characteristics of the zigzag-edged graphene nanoribbon spin filtering device, applying the spin-density functional tight-binding method and the non- equilibrium Green's function method. Our simulations have shown that the spin filtering effect can be controlled by applying the side-gate voltages that effectively induce the transverse electric fields. Influence of an edge lattice vacancy on the spin- filtering effect is also discussed.