求和点型无功/功率因数控制器的电力系统稳定器性能

R. Schaefer, Kiyong Kim
{"title":"求和点型无功/功率因数控制器的电力系统稳定器性能","authors":"R. Schaefer, Kiyong Kim","doi":"10.1109/PAPCON.2006.1673777","DOIUrl":null,"url":null,"abstract":"Var/power factor control for generators has often been the preferred operating control mode for pulp and paper power plants over voltage regulation to reduce the need for constant reactive power monitoring by plant operators. Today, for those machines located in the Western United States, the North American Reliability Council (NEPC) and Western Electric Co-coordinating Council (WECC) are ruling that machines rated more than 35 MVA or group of machines equal to or more than 75 MVA connected to the transmission grid through one transformer be operating in voltage regulating mode and be equipped with power system stabilizer to improve the transient stability of the system. The latest NERC and WECC standards do not allow for generators meeting these criteria to be operating in Var/power factor control. Over the years various types of Var/PF control have been provided. Two types of Var/PF controllers are available as described in IEEE 421.5. Type 1 Var/PF controller uses raise/lower signal based on generator output changes. The amount of raise/lower signal is a fixed voltage. The Var/PF controller of type 2 uses a PI controller, which changes a desired voltage setpoint smoothly in linear fashion. Both types are considered as a summing point type Var/PF controller. In this paper, the PSS performance is studied with type 2 Var/PF controller that does not have an undesirable PSS action caused by a sudden change in setpoint adjustment from the Var controller. The results illustrate that power system stabilizer performance is not deteriorated when the type 2 Var/PF control is implemented. This type of performance response can benefit pulp and paper mills who desire constant VAR/PF control but also requiring to meet the WECC regulation guidelines","PeriodicalId":231751,"journal":{"name":"Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power System Stabilizer Performance With Summing Point type Var/Power Factor Controllers\",\"authors\":\"R. Schaefer, Kiyong Kim\",\"doi\":\"10.1109/PAPCON.2006.1673777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Var/power factor control for generators has often been the preferred operating control mode for pulp and paper power plants over voltage regulation to reduce the need for constant reactive power monitoring by plant operators. Today, for those machines located in the Western United States, the North American Reliability Council (NEPC) and Western Electric Co-coordinating Council (WECC) are ruling that machines rated more than 35 MVA or group of machines equal to or more than 75 MVA connected to the transmission grid through one transformer be operating in voltage regulating mode and be equipped with power system stabilizer to improve the transient stability of the system. The latest NERC and WECC standards do not allow for generators meeting these criteria to be operating in Var/power factor control. Over the years various types of Var/PF control have been provided. Two types of Var/PF controllers are available as described in IEEE 421.5. Type 1 Var/PF controller uses raise/lower signal based on generator output changes. The amount of raise/lower signal is a fixed voltage. The Var/PF controller of type 2 uses a PI controller, which changes a desired voltage setpoint smoothly in linear fashion. Both types are considered as a summing point type Var/PF controller. In this paper, the PSS performance is studied with type 2 Var/PF controller that does not have an undesirable PSS action caused by a sudden change in setpoint adjustment from the Var controller. The results illustrate that power system stabilizer performance is not deteriorated when the type 2 Var/PF control is implemented. This type of performance response can benefit pulp and paper mills who desire constant VAR/PF control but also requiring to meet the WECC regulation guidelines\",\"PeriodicalId\":231751,\"journal\":{\"name\":\"Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAPCON.2006.1673777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAPCON.2006.1673777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

发电机的无功/功率因数控制通常是制浆和造纸发电厂的首选运行控制模式,通过电压调节来减少工厂操作员对持续无功监测的需求。今天,对于那些位于美国西部的机器,北美可靠性委员会(NEPC)和西部电力协调委员会(WECC)规定,额定功率超过35 MVA的机器或等于或超过75 MVA的机器组通过一台变压器连接到输电网,以调压模式运行,并配备电力系统稳定器,以提高系统的暂态稳定性。最新的NERC和WECC标准不允许满足这些标准的发电机在无功/功率因数控制下运行。多年来,提供了各种类型的Var/PF控制。如IEEE 421.5中所述,有两种类型的Var/PF控制器可用。1型Var/PF控制器使用基于发电机输出变化的升高/降低信号。上升/下降信号的量是一个固定的电压。类型2的Var/PF控制器使用PI控制器,它以线性方式平滑地改变所需的电压设定值。这两种类型都被认为是求和点类型的Var/PF控制器。在本文中,研究了2型Var/PF控制器的PSS性能,该控制器不具有由Var控制器的设定点调整突然变化引起的不良PSS动作。结果表明,采用2型Var/PF控制时,电力系统稳定器性能没有下降。这种类型的性能响应可以使纸浆和造纸厂受益,他们需要恒定的VAR/PF控制,但也需要满足WECC监管指南
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power System Stabilizer Performance With Summing Point type Var/Power Factor Controllers
Var/power factor control for generators has often been the preferred operating control mode for pulp and paper power plants over voltage regulation to reduce the need for constant reactive power monitoring by plant operators. Today, for those machines located in the Western United States, the North American Reliability Council (NEPC) and Western Electric Co-coordinating Council (WECC) are ruling that machines rated more than 35 MVA or group of machines equal to or more than 75 MVA connected to the transmission grid through one transformer be operating in voltage regulating mode and be equipped with power system stabilizer to improve the transient stability of the system. The latest NERC and WECC standards do not allow for generators meeting these criteria to be operating in Var/power factor control. Over the years various types of Var/PF control have been provided. Two types of Var/PF controllers are available as described in IEEE 421.5. Type 1 Var/PF controller uses raise/lower signal based on generator output changes. The amount of raise/lower signal is a fixed voltage. The Var/PF controller of type 2 uses a PI controller, which changes a desired voltage setpoint smoothly in linear fashion. Both types are considered as a summing point type Var/PF controller. In this paper, the PSS performance is studied with type 2 Var/PF controller that does not have an undesirable PSS action caused by a sudden change in setpoint adjustment from the Var controller. The results illustrate that power system stabilizer performance is not deteriorated when the type 2 Var/PF control is implemented. This type of performance response can benefit pulp and paper mills who desire constant VAR/PF control but also requiring to meet the WECC regulation guidelines
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信