基于压缩感知信道估计和脉冲噪声抑制的OFDM毫米波通信性能分析

P. Korrai, D. Sen
{"title":"基于压缩感知信道估计和脉冲噪声抑制的OFDM毫米波通信性能分析","authors":"P. Korrai, D. Sen","doi":"10.1109/ANTS.2016.7947867","DOIUrl":null,"url":null,"abstract":"Millimeter Wave (mmWave) channel estimation can be treated as a sparse signal recovery problem due to the sparse multipath characteristics of the channel. Utilizing compressive sensing (CS) theory, sparse signal recovery algorithms can be designed for channel estimation. However, these algorithms are sensitive to impulse noise, and hence the estimation accuracy degrades under non Gaussian noise. In this paper, we propose a novel algorithm for suppression of impulse noise to improve the system performance. The CS based channel estimation algorithms using pilot subcarriers of orthogonal frequency division multiplexing (OFDM) symbols in conjunction with the proposed impulse noise suppression method is utilized to evaluate the system performance over 60 GHz sparse channels. The mean square error (MSE) and bit error rate (BER) are considered as performance metrics. Comparison with the least squares (LS) estimation method using 4 quadrature amplitude modulation (QAM) OFDM symbols proves the efficacy of the proposed technique.","PeriodicalId":248902,"journal":{"name":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"167 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance analysis of OFDM mmWave communications with compressive sensing based channel estimation and impulse noise suppression\",\"authors\":\"P. Korrai, D. Sen\",\"doi\":\"10.1109/ANTS.2016.7947867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter Wave (mmWave) channel estimation can be treated as a sparse signal recovery problem due to the sparse multipath characteristics of the channel. Utilizing compressive sensing (CS) theory, sparse signal recovery algorithms can be designed for channel estimation. However, these algorithms are sensitive to impulse noise, and hence the estimation accuracy degrades under non Gaussian noise. In this paper, we propose a novel algorithm for suppression of impulse noise to improve the system performance. The CS based channel estimation algorithms using pilot subcarriers of orthogonal frequency division multiplexing (OFDM) symbols in conjunction with the proposed impulse noise suppression method is utilized to evaluate the system performance over 60 GHz sparse channels. The mean square error (MSE) and bit error rate (BER) are considered as performance metrics. Comparison with the least squares (LS) estimation method using 4 quadrature amplitude modulation (QAM) OFDM symbols proves the efficacy of the proposed technique.\",\"PeriodicalId\":248902,\"journal\":{\"name\":\"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"volume\":\"167 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTS.2016.7947867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2016.7947867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于毫米波信道的稀疏多径特性,其信道估计可以看作是一个稀疏信号恢复问题。利用压缩感知理论,可以设计用于信道估计的稀疏信号恢复算法。然而,这些算法对脉冲噪声很敏感,因此在非高斯噪声下估计精度下降。本文提出了一种抑制脉冲噪声的新算法,以提高系统的性能。利用正交频分复用(OFDM)符号导频子载波的基于CS的信道估计算法,结合所提出的脉冲噪声抑制方法,对60 GHz稀疏信道下的系统性能进行了评估。均方误差(MSE)和误码率(BER)作为性能指标。通过与使用4个正交调幅(QAM) OFDM符号的最小二乘(LS)估计方法的比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of OFDM mmWave communications with compressive sensing based channel estimation and impulse noise suppression
Millimeter Wave (mmWave) channel estimation can be treated as a sparse signal recovery problem due to the sparse multipath characteristics of the channel. Utilizing compressive sensing (CS) theory, sparse signal recovery algorithms can be designed for channel estimation. However, these algorithms are sensitive to impulse noise, and hence the estimation accuracy degrades under non Gaussian noise. In this paper, we propose a novel algorithm for suppression of impulse noise to improve the system performance. The CS based channel estimation algorithms using pilot subcarriers of orthogonal frequency division multiplexing (OFDM) symbols in conjunction with the proposed impulse noise suppression method is utilized to evaluate the system performance over 60 GHz sparse channels. The mean square error (MSE) and bit error rate (BER) are considered as performance metrics. Comparison with the least squares (LS) estimation method using 4 quadrature amplitude modulation (QAM) OFDM symbols proves the efficacy of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信