{"title":"快速多基线立体遮挡","authors":"M. Drouin, Martin Trudeau, S. Roy","doi":"10.1109/3DIM.2005.40","DOIUrl":null,"url":null,"abstract":"This paper presents a new and fast algorithm for multi-baseline stereo designed to handle the occlusion problem. The algorithm is a hybrid between fast heuristic occlusion overcoming algorithms that precompute an approximate visibility and slower methods that use correct visibility handling. Our approach is based on iterative dynamic programming and computes simultaneously disparity and camera visibility. Interestingly, dynamic programming makes it possible to compute exactly part of the visibility information. The remainder is obtained through heuristics. The validity of our scheme is established using real imagery with ground truth and compares favorably with other state-of-the-art multi-baseline stereo algorithms.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast multiple-baseline stereo with occlusion\",\"authors\":\"M. Drouin, Martin Trudeau, S. Roy\",\"doi\":\"10.1109/3DIM.2005.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new and fast algorithm for multi-baseline stereo designed to handle the occlusion problem. The algorithm is a hybrid between fast heuristic occlusion overcoming algorithms that precompute an approximate visibility and slower methods that use correct visibility handling. Our approach is based on iterative dynamic programming and computes simultaneously disparity and camera visibility. Interestingly, dynamic programming makes it possible to compute exactly part of the visibility information. The remainder is obtained through heuristics. The validity of our scheme is established using real imagery with ground truth and compares favorably with other state-of-the-art multi-baseline stereo algorithms.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a new and fast algorithm for multi-baseline stereo designed to handle the occlusion problem. The algorithm is a hybrid between fast heuristic occlusion overcoming algorithms that precompute an approximate visibility and slower methods that use correct visibility handling. Our approach is based on iterative dynamic programming and computes simultaneously disparity and camera visibility. Interestingly, dynamic programming makes it possible to compute exactly part of the visibility information. The remainder is obtained through heuristics. The validity of our scheme is established using real imagery with ground truth and compares favorably with other state-of-the-art multi-baseline stereo algorithms.