彩色视网膜眼底图像中血管分叉和交叉的自动检测

A. Bhuiyan, B. Nath, Joselíto J. Chua, K. Ramamohanarao
{"title":"彩色视网膜眼底图像中血管分叉和交叉的自动检测","authors":"A. Bhuiyan, B. Nath, Joselíto J. Chua, K. Ramamohanarao","doi":"10.1109/SITIS.2007.86","DOIUrl":null,"url":null,"abstract":"Identifying the vascular bifurcations and crossovers in the retinal image is helpful for predicting many cardiovascular diseases and can be used as biometric features and for image registration. In this paper, we propose an efficient method to detect vascular bifurcations and crossovers based on the vessel geometrical features. We segment the blood vessels from the color retinal RGB image, and apply the morphological thinning operation to find the vessel centerline. Applying a filter on this centreline image we detect the potential bifurcation and crossover points. The geometrical and topological properties of the blood vessels passing through these points are utilized to identify these points as the vessel bifurcations and crossovers. We evaluate our method against manually measured bifurcation and crossover points by an expert, and achieved the detection accuracy of 95.82%.","PeriodicalId":234433,"journal":{"name":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Automatic Detection of Vascular Bifurcations and Crossovers from Color Retinal Fundus Images\",\"authors\":\"A. Bhuiyan, B. Nath, Joselíto J. Chua, K. Ramamohanarao\",\"doi\":\"10.1109/SITIS.2007.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the vascular bifurcations and crossovers in the retinal image is helpful for predicting many cardiovascular diseases and can be used as biometric features and for image registration. In this paper, we propose an efficient method to detect vascular bifurcations and crossovers based on the vessel geometrical features. We segment the blood vessels from the color retinal RGB image, and apply the morphological thinning operation to find the vessel centerline. Applying a filter on this centreline image we detect the potential bifurcation and crossover points. The geometrical and topological properties of the blood vessels passing through these points are utilized to identify these points as the vessel bifurcations and crossovers. We evaluate our method against manually measured bifurcation and crossover points by an expert, and achieved the detection accuracy of 95.82%.\",\"PeriodicalId\":234433,\"journal\":{\"name\":\"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2007.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2007.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

识别视网膜图像中的血管分叉和交叉有助于预测许多心血管疾病,并可作为生物特征和图像配准。本文提出了一种基于血管几何特征的血管分叉和交叉检测方法。我们从彩色视网膜RGB图像中分割血管,并应用形态学细化操作找到血管中心线。在这个中心线图像上应用滤波器,我们检测到潜在的分叉点和交叉点。通过这些点的血管的几何和拓扑特性被用来识别这些点作为血管分叉和交叉。我们用专家手工测量的分岔点和交叉点来评估我们的方法,检测准确率达到95.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Detection of Vascular Bifurcations and Crossovers from Color Retinal Fundus Images
Identifying the vascular bifurcations and crossovers in the retinal image is helpful for predicting many cardiovascular diseases and can be used as biometric features and for image registration. In this paper, we propose an efficient method to detect vascular bifurcations and crossovers based on the vessel geometrical features. We segment the blood vessels from the color retinal RGB image, and apply the morphological thinning operation to find the vessel centerline. Applying a filter on this centreline image we detect the potential bifurcation and crossover points. The geometrical and topological properties of the blood vessels passing through these points are utilized to identify these points as the vessel bifurcations and crossovers. We evaluate our method against manually measured bifurcation and crossover points by an expert, and achieved the detection accuracy of 95.82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信