{"title":"一种基于脑电图信号的人类伸手抓握活动分层解码方法","authors":"Bhagyasree Kanuparthi, A. Turlapaty","doi":"10.1109/SPCOM55316.2022.9840794","DOIUrl":null,"url":null,"abstract":"Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enhanced by decoding the movements from a limb through an intuitive control of the prosthetic arm. However, decoding them with the traditional classifiers is a challenging task. In this paper, a two-stage hierarchical framework is proposed for the decoding of reach-and-grasp actions. In stage-l, the action signals are separated from rest segments based on power spectral density features and a fine k-nearest neighbor classifier (FKNN). In stage-2, the signals identified as action are further classified into palmar and lateral type reach-and-grasp actions using the mean absolute value features with the FKNN classifier. In comparison with the existing classifiers, the proposed method has a superior performance of 85.38% test accuracy.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Approach for Decoding Human Reach-and-Grasp Activities based on EEG Signals\",\"authors\":\"Bhagyasree Kanuparthi, A. Turlapaty\",\"doi\":\"10.1109/SPCOM55316.2022.9840794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enhanced by decoding the movements from a limb through an intuitive control of the prosthetic arm. However, decoding them with the traditional classifiers is a challenging task. In this paper, a two-stage hierarchical framework is proposed for the decoding of reach-and-grasp actions. In stage-l, the action signals are separated from rest segments based on power spectral density features and a fine k-nearest neighbor classifier (FKNN). In stage-2, the signals identified as action are further classified into palmar and lateral type reach-and-grasp actions using the mean absolute value features with the FKNN classifier. In comparison with the existing classifiers, the proposed method has a superior performance of 85.38% test accuracy.\",\"PeriodicalId\":246982,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM55316.2022.9840794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hierarchical Approach for Decoding Human Reach-and-Grasp Activities based on EEG Signals
Physically disabled patients such as the paralyzed, amputees and stroke patients find it difficult to perform daily activities on their own. A Brain-Computer Interface (BCI) using Electroencephalography (EEG) signals is an option for the rehabilitation of these patients. The BCI function can be enhanced by decoding the movements from a limb through an intuitive control of the prosthetic arm. However, decoding them with the traditional classifiers is a challenging task. In this paper, a two-stage hierarchical framework is proposed for the decoding of reach-and-grasp actions. In stage-l, the action signals are separated from rest segments based on power spectral density features and a fine k-nearest neighbor classifier (FKNN). In stage-2, the signals identified as action are further classified into palmar and lateral type reach-and-grasp actions using the mean absolute value features with the FKNN classifier. In comparison with the existing classifiers, the proposed method has a superior performance of 85.38% test accuracy.