换热器优化与控制的全通量模型

J. Burns, B. Kramer
{"title":"换热器优化与控制的全通量模型","authors":"J. Burns, B. Kramer","doi":"10.1109/ACC.2015.7170797","DOIUrl":null,"url":null,"abstract":"If convection is the dominate mechanism for heat transfer in a heat exchangers, then the devices are often modeled by hyperbolic partial differential equations. One of the difficulties with this approach is that for low (or zero) pipe flows, some of the imperial functions used to model friction can become singular. One way to address low flows is to include the full flux in the model so that the equation becomes a convection-diffusion equation with a “small” diffusion term. We show that solutions of the hyperbolic equation are recovered as limiting (viscosity) solutions of the convection-diffusion model. We employ a composite finite element - finite volume scheme to produce finite dimensional systems for control design. This scheme is known to be unconditionally L2-stable, uniformly with respect to the diffusion term. We present numerical examples to illustrate how the inclusion of a small diffusion term can impact controller design.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"94 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Full flux models for optimization and control of heat exchangers\",\"authors\":\"J. Burns, B. Kramer\",\"doi\":\"10.1109/ACC.2015.7170797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If convection is the dominate mechanism for heat transfer in a heat exchangers, then the devices are often modeled by hyperbolic partial differential equations. One of the difficulties with this approach is that for low (or zero) pipe flows, some of the imperial functions used to model friction can become singular. One way to address low flows is to include the full flux in the model so that the equation becomes a convection-diffusion equation with a “small” diffusion term. We show that solutions of the hyperbolic equation are recovered as limiting (viscosity) solutions of the convection-diffusion model. We employ a composite finite element - finite volume scheme to produce finite dimensional systems for control design. This scheme is known to be unconditionally L2-stable, uniformly with respect to the diffusion term. We present numerical examples to illustrate how the inclusion of a small diffusion term can impact controller design.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"94 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7170797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

如果对流是热交换器中传热的主要机制,则通常用双曲偏微分方程对该装置进行建模。这种方法的困难之一是,对于低(或零)管道流量,一些用于模拟摩擦的帝国函数可能会变得单一。解决低流量的一种方法是在模型中包含全部通量,使方程成为具有“小”扩散项的对流-扩散方程。我们证明了双曲方程的解可以恢复为对流扩散模型的极限(粘度)解。我们采用复合有限元-有限体积方案来生产控制设计的有限维系统。该格式是无条件l2稳定的,对于扩散项是一致的。我们给出了数值例子来说明包含一个小扩散项如何影响控制器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full flux models for optimization and control of heat exchangers
If convection is the dominate mechanism for heat transfer in a heat exchangers, then the devices are often modeled by hyperbolic partial differential equations. One of the difficulties with this approach is that for low (or zero) pipe flows, some of the imperial functions used to model friction can become singular. One way to address low flows is to include the full flux in the model so that the equation becomes a convection-diffusion equation with a “small” diffusion term. We show that solutions of the hyperbolic equation are recovered as limiting (viscosity) solutions of the convection-diffusion model. We employ a composite finite element - finite volume scheme to produce finite dimensional systems for control design. This scheme is known to be unconditionally L2-stable, uniformly with respect to the diffusion term. We present numerical examples to illustrate how the inclusion of a small diffusion term can impact controller design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信