用MATHEMATICA分析常微分方程的数值方法

Jaime Segarra-Escandón
{"title":"用MATHEMATICA分析常微分方程的数值方法","authors":"Jaime Segarra-Escandón","doi":"10.21017/rimci.2020.v7.n13.a72","DOIUrl":null,"url":null,"abstract":"In this research, the main objective is to perform the comparative analysis of numerical methods (Explicit Euler, Runge Kutta 4 and LocallyExact) for the resolution of differential equations. To fulfill the purpose of this study, the system of differential equations of the Lotka-Volterra model was used and the mathematical software Wolfram Mathematica was used. To perform the comparison of the numerical methods the Lotka-Volterra model was solved using the NdSolve command of Mathematica, this result was compared with the Methods Explicit Euler, Runge Kutta 4 and LocallyExact. The results obtained from the phase diagrams and the point table of the interactions indicate that the Runge Kutta 4 method has greater precision, followed by the LocallyExact method. The explicit Euler method draws considerably away from the result of NDSolve. \nDOI: http://dx.doi.org/10.21017/rimci.2020.v7.n13.a72","PeriodicalId":267527,"journal":{"name":"Revista Ingeniería, Matemáticas y Ciencias de la Información","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANÁLISIS DE LOS MÉTODOS NUMÉRICOS EN ECUACIONES DIFERENCIALES ORDINARIAS UTILIZANDO MATHEMATICA\",\"authors\":\"Jaime Segarra-Escandón\",\"doi\":\"10.21017/rimci.2020.v7.n13.a72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the main objective is to perform the comparative analysis of numerical methods (Explicit Euler, Runge Kutta 4 and LocallyExact) for the resolution of differential equations. To fulfill the purpose of this study, the system of differential equations of the Lotka-Volterra model was used and the mathematical software Wolfram Mathematica was used. To perform the comparison of the numerical methods the Lotka-Volterra model was solved using the NdSolve command of Mathematica, this result was compared with the Methods Explicit Euler, Runge Kutta 4 and LocallyExact. The results obtained from the phase diagrams and the point table of the interactions indicate that the Runge Kutta 4 method has greater precision, followed by the LocallyExact method. The explicit Euler method draws considerably away from the result of NDSolve. \\nDOI: http://dx.doi.org/10.21017/rimci.2020.v7.n13.a72\",\"PeriodicalId\":267527,\"journal\":{\"name\":\"Revista Ingeniería, Matemáticas y Ciencias de la Información\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingeniería, Matemáticas y Ciencias de la Información\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21017/rimci.2020.v7.n13.a72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingeniería, Matemáticas y Ciencias de la Información","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21017/rimci.2020.v7.n13.a72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,主要目的是对求解微分方程的数值方法(Explicit Euler, Runge Kutta 4和LocallyExact)进行比较分析。为了达到本研究的目的,采用Lotka-Volterra模型的微分方程组,使用数学软件Wolfram Mathematica。为了对Lotka-Volterra模型的数值方法进行比较,使用Mathematica的NdSolve命令求解Lotka-Volterra模型,并将其结果与Explicit Euler、Runge Kutta 4和LocallyExact方法进行了比较。相图和相互作用点表的结果表明,Runge - Kutta 4法精度较高,其次是LocallyExact法。显式欧拉方法与NDSolve的结果相差很大。DOI: http://dx.doi.org/10.21017/rimci.2020.v7.n13.a72
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANÁLISIS DE LOS MÉTODOS NUMÉRICOS EN ECUACIONES DIFERENCIALES ORDINARIAS UTILIZANDO MATHEMATICA
In this research, the main objective is to perform the comparative analysis of numerical methods (Explicit Euler, Runge Kutta 4 and LocallyExact) for the resolution of differential equations. To fulfill the purpose of this study, the system of differential equations of the Lotka-Volterra model was used and the mathematical software Wolfram Mathematica was used. To perform the comparison of the numerical methods the Lotka-Volterra model was solved using the NdSolve command of Mathematica, this result was compared with the Methods Explicit Euler, Runge Kutta 4 and LocallyExact. The results obtained from the phase diagrams and the point table of the interactions indicate that the Runge Kutta 4 method has greater precision, followed by the LocallyExact method. The explicit Euler method draws considerably away from the result of NDSolve. DOI: http://dx.doi.org/10.21017/rimci.2020.v7.n13.a72
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信