{"title":"基于敏感参数的变喷嘴涡轮初步设计","authors":"Sebastian Wittwer, Ivo Sandor","doi":"10.1115/GT2020-16145","DOIUrl":null,"url":null,"abstract":"\n Recent developments in turbocharged gasoline engines have established new requirements for the turbine. A simple approach of scaling or optimizing existing turbines on component level might not be sufficient in terms of finding an optimal solution according to the multi-point, multi-disciplinary layout target. In the following paper nondimensional functional parameters are derived from turbomachinery analytics and rated on corresponding values of existing turbine stages. The influence of different parameters on aerodynamic performance is discussed based on CFD results and arranged according to their sensitivity for different engine relevant operating conditions. A metamodel for the preliminary design of variable nozzle turbine stages is derived from DoE (Design of Experiments) based CFD results. It is evaluated regarding its predictive quality on several exemplary turbine stages. Both, CFD and experimental results are therefore used while the experimental results are made up of hot gas stand measurements as well as measurements on engine test bench. Thus, not only the influence of functional parameters can be verified on turbine efficiency characteristics, but beyond that also the predictive quality of engine performance can be assessed.","PeriodicalId":194198,"journal":{"name":"Volume 2E: Turbomachinery","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Design of Variable Nozzle Turbines Based on Sensitive Parameters\",\"authors\":\"Sebastian Wittwer, Ivo Sandor\",\"doi\":\"10.1115/GT2020-16145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent developments in turbocharged gasoline engines have established new requirements for the turbine. A simple approach of scaling or optimizing existing turbines on component level might not be sufficient in terms of finding an optimal solution according to the multi-point, multi-disciplinary layout target. In the following paper nondimensional functional parameters are derived from turbomachinery analytics and rated on corresponding values of existing turbine stages. The influence of different parameters on aerodynamic performance is discussed based on CFD results and arranged according to their sensitivity for different engine relevant operating conditions. A metamodel for the preliminary design of variable nozzle turbine stages is derived from DoE (Design of Experiments) based CFD results. It is evaluated regarding its predictive quality on several exemplary turbine stages. Both, CFD and experimental results are therefore used while the experimental results are made up of hot gas stand measurements as well as measurements on engine test bench. Thus, not only the influence of functional parameters can be verified on turbine efficiency characteristics, but beyond that also the predictive quality of engine performance can be assessed.\",\"PeriodicalId\":194198,\"journal\":{\"name\":\"Volume 2E: Turbomachinery\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2E: Turbomachinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-16145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2E: Turbomachinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-16145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary Design of Variable Nozzle Turbines Based on Sensitive Parameters
Recent developments in turbocharged gasoline engines have established new requirements for the turbine. A simple approach of scaling or optimizing existing turbines on component level might not be sufficient in terms of finding an optimal solution according to the multi-point, multi-disciplinary layout target. In the following paper nondimensional functional parameters are derived from turbomachinery analytics and rated on corresponding values of existing turbine stages. The influence of different parameters on aerodynamic performance is discussed based on CFD results and arranged according to their sensitivity for different engine relevant operating conditions. A metamodel for the preliminary design of variable nozzle turbine stages is derived from DoE (Design of Experiments) based CFD results. It is evaluated regarding its predictive quality on several exemplary turbine stages. Both, CFD and experimental results are therefore used while the experimental results are made up of hot gas stand measurements as well as measurements on engine test bench. Thus, not only the influence of functional parameters can be verified on turbine efficiency characteristics, but beyond that also the predictive quality of engine performance can be assessed.