基于迁移学习的基于裁剪技术的DCNN情绪人脸识别

Suputri Devi D. Anjani, E. Suneetha
{"title":"基于迁移学习的基于裁剪技术的DCNN情绪人脸识别","authors":"Suputri Devi D. Anjani, E. Suneetha","doi":"10.26634/jcom.10.2.19059","DOIUrl":null,"url":null,"abstract":"Facial Expression Recognition (FER) has grown in popularity as a result of the recent advancement and use of humancomputer interface technologies. Because the images can vary in brightness, backdrop, position, etc. it is challenging for current machine learning and deep learning models to identify facial expression. If the database is small, it doesn't operate well. Feature extraction is crucial for FER, and if the derived characteristics can be separated, even a straightforward approach can help tremendously. Deep learning techniques and automated feature extraction, allow some irrelevant features to conflict with important features. In this paper, we deal with limited data and simply extract useful features from images. To make data more numerous and allow for the extraction of just important facial features, we suggest innovative face cropping, rotation, and simplification procedures and advocate using the Transfer Learning technique to construct DCNN for building a very accurate FER system. By replacing the dense top layer(s) with FER, a pretrained DCNN model is adopted, and the model is then modified with facial expression data. The training of the dense layer(s) is followed by adjusting each of the pre-trained DCNN blocks in turn. This new pipeline technique has gradually increased the accuracy of FER to a higher degree. On the CK+ and JAFFE datasets, experiments were run to assess the suggested methodology. For 7-class studies on the CK+ and JAFFE databases, high average accuracy in recognition of 99.49% and 98.58% were acquired.","PeriodicalId":130578,"journal":{"name":"i-manager's Journal on Computer Science","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning based effective emotional face recognition using DCNN via cropping techniques\",\"authors\":\"Suputri Devi D. Anjani, E. Suneetha\",\"doi\":\"10.26634/jcom.10.2.19059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial Expression Recognition (FER) has grown in popularity as a result of the recent advancement and use of humancomputer interface technologies. Because the images can vary in brightness, backdrop, position, etc. it is challenging for current machine learning and deep learning models to identify facial expression. If the database is small, it doesn't operate well. Feature extraction is crucial for FER, and if the derived characteristics can be separated, even a straightforward approach can help tremendously. Deep learning techniques and automated feature extraction, allow some irrelevant features to conflict with important features. In this paper, we deal with limited data and simply extract useful features from images. To make data more numerous and allow for the extraction of just important facial features, we suggest innovative face cropping, rotation, and simplification procedures and advocate using the Transfer Learning technique to construct DCNN for building a very accurate FER system. By replacing the dense top layer(s) with FER, a pretrained DCNN model is adopted, and the model is then modified with facial expression data. The training of the dense layer(s) is followed by adjusting each of the pre-trained DCNN blocks in turn. This new pipeline technique has gradually increased the accuracy of FER to a higher degree. On the CK+ and JAFFE datasets, experiments were run to assess the suggested methodology. For 7-class studies on the CK+ and JAFFE databases, high average accuracy in recognition of 99.49% and 98.58% were acquired.\",\"PeriodicalId\":130578,\"journal\":{\"name\":\"i-manager's Journal on Computer Science\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jcom.10.2.19059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jcom.10.2.19059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部表情识别(FER)越来越受欢迎的结果是最近的进步和使用的人机界面技术。由于图像的亮度、背景、位置等各不相同,因此当前的机器学习和深度学习模型很难识别面部表情。如果数据库很小,它就不能很好地运行。特征提取对FER至关重要,如果可以分离派生的特征,即使是简单的方法也可以提供巨大的帮助。深度学习技术和自动特征提取允许一些不相关的特征与重要的特征相冲突。在本文中,我们处理有限的数据,简单地从图像中提取有用的特征。为了使数据更加丰富,并允许提取重要的面部特征,我们建议创新面部裁剪、旋转和简化程序,并主张使用迁移学习技术构建DCNN,以构建非常精确的FER系统。通过用FER替换密集的顶层,采用预训练好的DCNN模型,然后用面部表情数据对模型进行修正。密集层的训练之后,依次调整每个预训练好的DCNN块。这种新的管道技术逐渐将FER的精度提高到更高的程度。在CK+和JAFFE数据集上,运行实验来评估建议的方法。在CK+和JAFFE数据库上进行的7类研究中,平均识别准确率分别达到99.49%和98.58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning based effective emotional face recognition using DCNN via cropping techniques
Facial Expression Recognition (FER) has grown in popularity as a result of the recent advancement and use of humancomputer interface technologies. Because the images can vary in brightness, backdrop, position, etc. it is challenging for current machine learning and deep learning models to identify facial expression. If the database is small, it doesn't operate well. Feature extraction is crucial for FER, and if the derived characteristics can be separated, even a straightforward approach can help tremendously. Deep learning techniques and automated feature extraction, allow some irrelevant features to conflict with important features. In this paper, we deal with limited data and simply extract useful features from images. To make data more numerous and allow for the extraction of just important facial features, we suggest innovative face cropping, rotation, and simplification procedures and advocate using the Transfer Learning technique to construct DCNN for building a very accurate FER system. By replacing the dense top layer(s) with FER, a pretrained DCNN model is adopted, and the model is then modified with facial expression data. The training of the dense layer(s) is followed by adjusting each of the pre-trained DCNN blocks in turn. This new pipeline technique has gradually increased the accuracy of FER to a higher degree. On the CK+ and JAFFE datasets, experiments were run to assess the suggested methodology. For 7-class studies on the CK+ and JAFFE databases, high average accuracy in recognition of 99.49% and 98.58% were acquired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信