基于粒子群算法的噪声信号参数辨识

Ezequiel Martinez-Ayala, V. Ayala-Ramírez, R. E. Sánchez-Yáñez
{"title":"基于粒子群算法的噪声信号参数辨识","authors":"Ezequiel Martinez-Ayala, V. Ayala-Ramírez, R. E. Sánchez-Yáñez","doi":"10.1109/CONIELECOMP.2011.5749351","DOIUrl":null,"url":null,"abstract":"This work presents an approach to use Particle Swarm Optimization (PSO) to identify the amplitude, frequency and phase parameters of a sinusoidal signal corrupted with additive Gaussian noise using a discrete sample of it. We encode signal parameters in the particles and we evaluate its goodness by computing the root mean square (RMS) error of the difference between a discrete signal synthesized using the particle configuration and the input signal sequence. We have validated our approach by using a set of test signals presenting variations on their parameters and in the Signal to Noise Ratio (SNR) resulting from the signal corruption. The PSO was tuned by using a reference signal in order to choose a suitable configuration for the PSO parameters. The approach has shown to perform successfully with signals exhibiting a SNR as low as 16.99 dB with an RMS error of 3 %.","PeriodicalId":432662,"journal":{"name":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","volume":"166 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Noisy signal parameter identification using Particle Swarm Optimization\",\"authors\":\"Ezequiel Martinez-Ayala, V. Ayala-Ramírez, R. E. Sánchez-Yáñez\",\"doi\":\"10.1109/CONIELECOMP.2011.5749351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an approach to use Particle Swarm Optimization (PSO) to identify the amplitude, frequency and phase parameters of a sinusoidal signal corrupted with additive Gaussian noise using a discrete sample of it. We encode signal parameters in the particles and we evaluate its goodness by computing the root mean square (RMS) error of the difference between a discrete signal synthesized using the particle configuration and the input signal sequence. We have validated our approach by using a set of test signals presenting variations on their parameters and in the Signal to Noise Ratio (SNR) resulting from the signal corruption. The PSO was tuned by using a reference signal in order to choose a suitable configuration for the PSO parameters. The approach has shown to perform successfully with signals exhibiting a SNR as low as 16.99 dB with an RMS error of 3 %.\",\"PeriodicalId\":432662,\"journal\":{\"name\":\"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers\",\"volume\":\"166 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIELECOMP.2011.5749351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2011.5749351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种使用粒子群优化(PSO)的方法来识别被加性高斯噪声破坏的正弦信号的振幅,频率和相位参数。我们在粒子中编码信号参数,并通过计算使用粒子结构合成的离散信号与输入信号序列之差的均方根误差来评估其优劣。我们通过使用一组测试信号来验证我们的方法,这些信号的参数和信号损坏导致的信噪比(SNR)发生变化。利用参考信号对粒子群进行调谐,为粒子群参数选择合适的配置。该方法已被证明可以成功地处理信噪比低至16.99 dB的信号,均方根误差为3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noisy signal parameter identification using Particle Swarm Optimization
This work presents an approach to use Particle Swarm Optimization (PSO) to identify the amplitude, frequency and phase parameters of a sinusoidal signal corrupted with additive Gaussian noise using a discrete sample of it. We encode signal parameters in the particles and we evaluate its goodness by computing the root mean square (RMS) error of the difference between a discrete signal synthesized using the particle configuration and the input signal sequence. We have validated our approach by using a set of test signals presenting variations on their parameters and in the Signal to Noise Ratio (SNR) resulting from the signal corruption. The PSO was tuned by using a reference signal in order to choose a suitable configuration for the PSO parameters. The approach has shown to perform successfully with signals exhibiting a SNR as low as 16.99 dB with an RMS error of 3 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信