基于模糊集的社交网络用户情感分析的自然语言文本解析

E. E. Luneva, V. S. Zamyatina, P. I. Banokin, S. V. Ivantsov
{"title":"基于模糊集的社交网络用户情感分析的自然语言文本解析","authors":"E. E. Luneva, V. S. Zamyatina, P. I. Banokin, S. V. Ivantsov","doi":"10.1109/MEACS.2015.7414902","DOIUrl":null,"url":null,"abstract":"The article introduces natural language text parsing algorithm for social network user sentiment evaluation within proposed technique based on fuzzy sets. The paper contains experimental data and shows the steps of text parsing algorithm and calculation of algorithm accuracy on messages on a certain topic. Application of proposed algorithm and technique is demonstrated on experimental data from Twitter social network.","PeriodicalId":423038,"journal":{"name":"2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Natural language text parsing for social network user sentiment analysis based on fuzzy sets\",\"authors\":\"E. E. Luneva, V. S. Zamyatina, P. I. Banokin, S. V. Ivantsov\",\"doi\":\"10.1109/MEACS.2015.7414902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article introduces natural language text parsing algorithm for social network user sentiment evaluation within proposed technique based on fuzzy sets. The paper contains experimental data and shows the steps of text parsing algorithm and calculation of algorithm accuracy on messages on a certain topic. Application of proposed algorithm and technique is demonstrated on experimental data from Twitter social network.\",\"PeriodicalId\":423038,\"journal\":{\"name\":\"2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEACS.2015.7414902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEACS.2015.7414902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种基于模糊集的自然语言文本分析算法,用于社交网络用户情感评价。文中给出了实验数据,给出了文本解析算法的步骤,并对某一主题的消息进行了算法精度的计算。在Twitter社交网络的实验数据上验证了算法和技术的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural language text parsing for social network user sentiment analysis based on fuzzy sets
The article introduces natural language text parsing algorithm for social network user sentiment evaluation within proposed technique based on fuzzy sets. The paper contains experimental data and shows the steps of text parsing algorithm and calculation of algorithm accuracy on messages on a certain topic. Application of proposed algorithm and technique is demonstrated on experimental data from Twitter social network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信