基于监督域自适应的低分辨率三维点云改进语义分割

Asmaa Elhadidy, Mohamed Afifi, Mohammed Hassoubah, Yara Ali, M. Elhelw
{"title":"基于监督域自适应的低分辨率三维点云改进语义分割","authors":"Asmaa Elhadidy, Mohamed Afifi, Mohammed Hassoubah, Yara Ali, M. Elhelw","doi":"10.1109/NILES50944.2020.9257903","DOIUrl":null,"url":null,"abstract":"One of the key challenges in applying deep learning to solve real-life problems is the lack of large annotated datasets. Furthermore, for a deep learning model to perform well on the test set, all samples in the training and test sets should be independent and identically distributed (i.i.d.), which means that test samples should be similar to the samples that were used to train the model. In many cases, however, the underlying training and test set distributions are different. In such cases, it is common to adapt the test samples by transforming them to their equivalent counterparts in the domain of the training data before being processed by the deep learning model. In this paper, we perform domain adaptation of low-resolution 8, 16 and 32 channels LiDAR 3D point clouds projected on 2D spherical images in order to improve the quality of semantic segmentation tasks. To achieve this, the low-resolution 3D point clouds are transformed using an end-to-end supervised learning approach to spherical images that are very similar to those obtained by projecting high-resolution 64 channels LiDAR point clouds, without changing the underlying structure of the scene. The proposed framework is evaluated by training a semantic segmentation model on 64 channels LiDAR clouds from the Semantic KITTI dataset [1] and using this model to segment 8, 16 and 32 channel point clouds after adapting them using our framework. The results obtained from carried out experiments demonstrate the effectiveness of our framework where segmentation results surpassed those obtained with nearest neighbor interpolation methods.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improved Semantic Segmentation of Low-Resolution 3D Point Clouds Using Supervised Domain Adaptation\",\"authors\":\"Asmaa Elhadidy, Mohamed Afifi, Mohammed Hassoubah, Yara Ali, M. Elhelw\",\"doi\":\"10.1109/NILES50944.2020.9257903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the key challenges in applying deep learning to solve real-life problems is the lack of large annotated datasets. Furthermore, for a deep learning model to perform well on the test set, all samples in the training and test sets should be independent and identically distributed (i.i.d.), which means that test samples should be similar to the samples that were used to train the model. In many cases, however, the underlying training and test set distributions are different. In such cases, it is common to adapt the test samples by transforming them to their equivalent counterparts in the domain of the training data before being processed by the deep learning model. In this paper, we perform domain adaptation of low-resolution 8, 16 and 32 channels LiDAR 3D point clouds projected on 2D spherical images in order to improve the quality of semantic segmentation tasks. To achieve this, the low-resolution 3D point clouds are transformed using an end-to-end supervised learning approach to spherical images that are very similar to those obtained by projecting high-resolution 64 channels LiDAR point clouds, without changing the underlying structure of the scene. The proposed framework is evaluated by training a semantic segmentation model on 64 channels LiDAR clouds from the Semantic KITTI dataset [1] and using this model to segment 8, 16 and 32 channel point clouds after adapting them using our framework. The results obtained from carried out experiments demonstrate the effectiveness of our framework where segmentation results surpassed those obtained with nearest neighbor interpolation methods.\",\"PeriodicalId\":253090,\"journal\":{\"name\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES50944.2020.9257903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将深度学习应用于解决现实问题的关键挑战之一是缺乏大型注释数据集。此外,为了使深度学习模型在测试集上表现良好,训练集和测试集中的所有样本都应该是独立且同分布的(i.i.d),这意味着测试样本应该与用于训练模型的样本相似。然而,在许多情况下,底层的训练集和测试集分布是不同的。在这种情况下,在深度学习模型处理之前,通常通过将测试样本转换为训练数据域中的等效对应来调整测试样本。在本文中,为了提高语义分割任务的质量,我们对投射在二维球面图像上的低分辨率8、16和32通道LiDAR 3D点云进行了域适应。为了实现这一目标,使用端到端监督学习方法将低分辨率3D点云转换为球形图像,这些图像与投影高分辨率64通道LiDAR点云获得的图像非常相似,而不改变场景的底层结构。通过对来自semantic KITTI数据集[1]的64通道LiDAR云进行语义分割模型训练,并使用该模型对使用我们的框架进行调整后的8、16和32通道点云进行分割,对所提出的框架进行了评估。实验结果证明了该框架的有效性,分割结果优于最近邻插值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Semantic Segmentation of Low-Resolution 3D Point Clouds Using Supervised Domain Adaptation
One of the key challenges in applying deep learning to solve real-life problems is the lack of large annotated datasets. Furthermore, for a deep learning model to perform well on the test set, all samples in the training and test sets should be independent and identically distributed (i.i.d.), which means that test samples should be similar to the samples that were used to train the model. In many cases, however, the underlying training and test set distributions are different. In such cases, it is common to adapt the test samples by transforming them to their equivalent counterparts in the domain of the training data before being processed by the deep learning model. In this paper, we perform domain adaptation of low-resolution 8, 16 and 32 channels LiDAR 3D point clouds projected on 2D spherical images in order to improve the quality of semantic segmentation tasks. To achieve this, the low-resolution 3D point clouds are transformed using an end-to-end supervised learning approach to spherical images that are very similar to those obtained by projecting high-resolution 64 channels LiDAR point clouds, without changing the underlying structure of the scene. The proposed framework is evaluated by training a semantic segmentation model on 64 channels LiDAR clouds from the Semantic KITTI dataset [1] and using this model to segment 8, 16 and 32 channel point clouds after adapting them using our framework. The results obtained from carried out experiments demonstrate the effectiveness of our framework where segmentation results surpassed those obtained with nearest neighbor interpolation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信