移动机器人智能自主导航:空间概念获取与目标识别

Eric A. Antonelo, M. Figueiredo, A. Baerveldt, R. Calvo
{"title":"移动机器人智能自主导航:空间概念获取与目标识别","authors":"Eric A. Antonelo, M. Figueiredo, A. Baerveldt, R. Calvo","doi":"10.1109/CIRA.2005.1554335","DOIUrl":null,"url":null,"abstract":"An autonomous system able to construct its own navigation strategy for mobile robots is proposed. The navigation strategy is molded from navigation experiences (succeeding as the robot navigates) according to a classical reinforcement learning procedure. The autonomous system is based on modular hierarchical neural networks. Initially, the navigation performance is poor (many collisions occur). Computer simulations show that after a period of learning, the autonomous system generates efficient obstacle avoidance and target seeking behaviors. Experiments also offer support for concluding that the autonomous system develops a variety of object discrimination capability and of spatial concepts.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Intelligent autonomous navigation for mobile robots: spatial concept acquisition and object discrimination\",\"authors\":\"Eric A. Antonelo, M. Figueiredo, A. Baerveldt, R. Calvo\",\"doi\":\"10.1109/CIRA.2005.1554335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An autonomous system able to construct its own navigation strategy for mobile robots is proposed. The navigation strategy is molded from navigation experiences (succeeding as the robot navigates) according to a classical reinforcement learning procedure. The autonomous system is based on modular hierarchical neural networks. Initially, the navigation performance is poor (many collisions occur). Computer simulations show that after a period of learning, the autonomous system generates efficient obstacle avoidance and target seeking behaviors. Experiments also offer support for concluding that the autonomous system develops a variety of object discrimination capability and of spatial concepts.\",\"PeriodicalId\":162553,\"journal\":{\"name\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2005.1554335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种能够自行构建移动机器人导航策略的自主系统。根据经典的强化学习过程,导航策略是根据导航经验(随着机器人导航而成功)塑造的。该自主系统基于模块化层次神经网络。最初,导航性能很差(发生许多碰撞)。计算机仿真表明,经过一段时间的学习,自主系统产生了有效的避障和目标寻找行为。实验还支持了自主系统具有多种物体识别能力和空间概念的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent autonomous navigation for mobile robots: spatial concept acquisition and object discrimination
An autonomous system able to construct its own navigation strategy for mobile robots is proposed. The navigation strategy is molded from navigation experiences (succeeding as the robot navigates) according to a classical reinforcement learning procedure. The autonomous system is based on modular hierarchical neural networks. Initially, the navigation performance is poor (many collisions occur). Computer simulations show that after a period of learning, the autonomous system generates efficient obstacle avoidance and target seeking behaviors. Experiments also offer support for concluding that the autonomous system develops a variety of object discrimination capability and of spatial concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信