不匹配计算:神经形态极限学习机

Enyi Yao, Shaista Hussain, A. Basu, G. Huang
{"title":"不匹配计算:神经形态极限学习机","authors":"Enyi Yao, Shaista Hussain, A. Basu, G. Huang","doi":"10.1109/BIOCAS.2013.6679697","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a low power neuromorphic machine learner that utilizes device mismatch prevalent in today's VLSI processes to perform a significant part of the computation while a digital back end enables precision in the final output. The particular machine learning algorithm we use is extreme learning machine (ELM). Mismatch in silicon spiking neurons and synapses are used to perform the vector-matrix multiplication (VMM) that forms the first stage of this classifier and is the most computationally intensive. System simulations are presented to evaluate the dependence of performance (in a classification and a regression task) on analog and digital parameters like weight resolution, maximum spike frequency etc. SPICE simulations show that the proposed implementation is ≈ 92X more energy efficient as opposed to custom digital implementations for a classification task with 100 dimensional inputs. Measurement results for a regression task from a field programmable analog array (FPAA) fabricated in 0.35μm CMOS are presented as a proof of concept.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Computation using mismatch: Neuromorphic extreme learning machines\",\"authors\":\"Enyi Yao, Shaista Hussain, A. Basu, G. Huang\",\"doi\":\"10.1109/BIOCAS.2013.6679697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a low power neuromorphic machine learner that utilizes device mismatch prevalent in today's VLSI processes to perform a significant part of the computation while a digital back end enables precision in the final output. The particular machine learning algorithm we use is extreme learning machine (ELM). Mismatch in silicon spiking neurons and synapses are used to perform the vector-matrix multiplication (VMM) that forms the first stage of this classifier and is the most computationally intensive. System simulations are presented to evaluate the dependence of performance (in a classification and a regression task) on analog and digital parameters like weight resolution, maximum spike frequency etc. SPICE simulations show that the proposed implementation is ≈ 92X more energy efficient as opposed to custom digital implementations for a classification task with 100 dimensional inputs. Measurement results for a regression task from a field programmable analog array (FPAA) fabricated in 0.35μm CMOS are presented as a proof of concept.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2013.6679697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2013.6679697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们描述了一种低功耗神经形态机器学习,它利用当今VLSI工艺中普遍存在的器件不匹配来执行计算的重要部分,而数字后端可以实现最终输出的精度。我们使用的特殊机器学习算法是极限学习机(ELM)。硅尖峰神经元和突触的不匹配用于执行向量矩阵乘法(VMM),这是该分类器的第一阶段,也是计算最密集的阶段。提出了系统仿真来评估性能(在分类和回归任务中)对模拟和数字参数(如权重分辨率,最大尖峰频率等)的依赖性。SPICE仿真表明,对于具有100维输入的分类任务,与自定义数字实现相比,所提出的实现节能约92倍。在0.35μm CMOS中制作的现场可编程模拟阵列(FPAA)的回归任务的测量结果作为概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation using mismatch: Neuromorphic extreme learning machines
In this paper, we describe a low power neuromorphic machine learner that utilizes device mismatch prevalent in today's VLSI processes to perform a significant part of the computation while a digital back end enables precision in the final output. The particular machine learning algorithm we use is extreme learning machine (ELM). Mismatch in silicon spiking neurons and synapses are used to perform the vector-matrix multiplication (VMM) that forms the first stage of this classifier and is the most computationally intensive. System simulations are presented to evaluate the dependence of performance (in a classification and a regression task) on analog and digital parameters like weight resolution, maximum spike frequency etc. SPICE simulations show that the proposed implementation is ≈ 92X more energy efficient as opposed to custom digital implementations for a classification task with 100 dimensional inputs. Measurement results for a regression task from a field programmable analog array (FPAA) fabricated in 0.35μm CMOS are presented as a proof of concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信