F. Gholami, S. Zinadini, A. Zinatizadeh, Elham Noori, E. Rafiee
{"title":"氧化石墨烯/银纳米颗粒聚醚砜防污纳滤膜的制备与表征","authors":"F. Gholami, S. Zinadini, A. Zinatizadeh, Elham Noori, E. Rafiee","doi":"10.5829/ije.2017.30.10a.02","DOIUrl":null,"url":null,"abstract":"Graphene oxide/Ag nanoparticles (Ag/GO) was prepared and employed to synthesize antifouling polyethersulfone (PES) mixed matrix membranes. The performance of the membranes was evaluated in terms of flux, hydrophilicity and anti-biofouling properties. With increment of the Ag/GO from 0 to 0.1 wt.%, the pure water flux increased from 24.7 up to 54.1 kg/m2 h. The flux recovery ratio (FRR) of the membranes was performed using milk powder solution and the results illustrated that the 0.1 wt.% Ag/GO membrane had the best fouling resistance with the FRR value of 95.45%. The performance of the nanofiltration was assessed using the retention of Direct Red 16. It was indicated that the Ag/GO-PES membranes have remarkable dye removal (98.38% rejection). The anti-biofouling activities of the 0.1 wt.% Ag/GO mixed matrix membrane was also investigated using activated sludge and the results showed a notable improvement.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"98 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Preparation and Characterization of an Antifouling Polyethersulfone Nanofiltration Membrane Blended with Graphene Oxide/Ag Nanoparticles\",\"authors\":\"F. Gholami, S. Zinadini, A. Zinatizadeh, Elham Noori, E. Rafiee\",\"doi\":\"10.5829/ije.2017.30.10a.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene oxide/Ag nanoparticles (Ag/GO) was prepared and employed to synthesize antifouling polyethersulfone (PES) mixed matrix membranes. The performance of the membranes was evaluated in terms of flux, hydrophilicity and anti-biofouling properties. With increment of the Ag/GO from 0 to 0.1 wt.%, the pure water flux increased from 24.7 up to 54.1 kg/m2 h. The flux recovery ratio (FRR) of the membranes was performed using milk powder solution and the results illustrated that the 0.1 wt.% Ag/GO membrane had the best fouling resistance with the FRR value of 95.45%. The performance of the nanofiltration was assessed using the retention of Direct Red 16. It was indicated that the Ag/GO-PES membranes have remarkable dye removal (98.38% rejection). The anti-biofouling activities of the 0.1 wt.% Ag/GO mixed matrix membrane was also investigated using activated sludge and the results showed a notable improvement.\",\"PeriodicalId\":416886,\"journal\":{\"name\":\"International journal of engineering. Transactions A: basics\",\"volume\":\"98 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of engineering. Transactions A: basics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2017.30.10a.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2017.30.10a.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and Characterization of an Antifouling Polyethersulfone Nanofiltration Membrane Blended with Graphene Oxide/Ag Nanoparticles
Graphene oxide/Ag nanoparticles (Ag/GO) was prepared and employed to synthesize antifouling polyethersulfone (PES) mixed matrix membranes. The performance of the membranes was evaluated in terms of flux, hydrophilicity and anti-biofouling properties. With increment of the Ag/GO from 0 to 0.1 wt.%, the pure water flux increased from 24.7 up to 54.1 kg/m2 h. The flux recovery ratio (FRR) of the membranes was performed using milk powder solution and the results illustrated that the 0.1 wt.% Ag/GO membrane had the best fouling resistance with the FRR value of 95.45%. The performance of the nanofiltration was assessed using the retention of Direct Red 16. It was indicated that the Ag/GO-PES membranes have remarkable dye removal (98.38% rejection). The anti-biofouling activities of the 0.1 wt.% Ag/GO mixed matrix membrane was also investigated using activated sludge and the results showed a notable improvement.