网页分类的多类单标签模型

Aakash Kag, L. Jenila, Livingston L. M. Merlin, Livingston L. G.X Agnel
{"title":"网页分类的多类单标签模型","authors":"Aakash Kag, L. Jenila, Livingston L. M. Merlin, Livingston L. G.X Agnel","doi":"10.1109/ICRAECC43874.2019.8995087","DOIUrl":null,"url":null,"abstract":"Web is a huge repository of information and there is a need of categorization of web pages to facilitate better search and retrieval of pages. Web page classification has become a challenging task due to the exponential growth of the World Wide Web and this study augments classification model with a general facility for automatically assigning class label (e.g., sport, news) to web pages based on the output of a Naive Bayes classifier. For the purpose of build classification model, yahoo Open Directory Project (ODP) data set has been used for create training and testing set. In this research work web page classification was done using Uniform Resource Locator (URL) features, Meta data, Meta keywords, Internal Links and text, which gives better result than URLs based method.","PeriodicalId":137313,"journal":{"name":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiclass Single Label Model for Web Page Classification\",\"authors\":\"Aakash Kag, L. Jenila, Livingston L. M. Merlin, Livingston L. G.X Agnel\",\"doi\":\"10.1109/ICRAECC43874.2019.8995087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web is a huge repository of information and there is a need of categorization of web pages to facilitate better search and retrieval of pages. Web page classification has become a challenging task due to the exponential growth of the World Wide Web and this study augments classification model with a general facility for automatically assigning class label (e.g., sport, news) to web pages based on the output of a Naive Bayes classifier. For the purpose of build classification model, yahoo Open Directory Project (ODP) data set has been used for create training and testing set. In this research work web page classification was done using Uniform Resource Locator (URL) features, Meta data, Meta keywords, Internal Links and text, which gives better result than URLs based method.\",\"PeriodicalId\":137313,\"journal\":{\"name\":\"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAECC43874.2019.8995087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAECC43874.2019.8995087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Web是一个巨大的信息存储库,需要对网页进行分类,以便更好地搜索和检索页面。由于万维网的指数级增长,网页分类已经成为一项具有挑战性的任务,本研究基于朴素贝叶斯分类器的输出,用一种通用的工具来增强分类模型,自动为网页分配类标签(例如,体育,新闻)。为了构建分类模型,使用yahoo Open Directory Project (ODP)数据集创建训练集和测试集。本研究利用统一资源定位器(URL)特征、元数据、元关键词、内部链接和文本对网页进行分类,结果优于基于URL的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiclass Single Label Model for Web Page Classification
Web is a huge repository of information and there is a need of categorization of web pages to facilitate better search and retrieval of pages. Web page classification has become a challenging task due to the exponential growth of the World Wide Web and this study augments classification model with a general facility for automatically assigning class label (e.g., sport, news) to web pages based on the output of a Naive Bayes classifier. For the purpose of build classification model, yahoo Open Directory Project (ODP) data set has been used for create training and testing set. In this research work web page classification was done using Uniform Resource Locator (URL) features, Meta data, Meta keywords, Internal Links and text, which gives better result than URLs based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信