{"title":"传输多视点视频内容时长期演进蜂窝网络性能的评估","authors":"C. J. Debono, Gloria-Anne Ellul","doi":"10.4018/ijwnbt.2014070102","DOIUrl":null,"url":null,"abstract":"The Long Term Evolution (LTE) cellular technology provides higher data rates than its predecessor technologies. This advancement paves the way for more data services, including improved multimedia services. Three-dimensional (3D) video transmission is one such service that can benefit from LTE deployment. For a positive uptake of 3D video transmission, the network must provide a good Quality of Service (QoS). In this paper the authors evaluate the LTE network's performance when transmitting Multi-view Video Coding (MVC) using simulcast and inter-view prediction coding. Furthermore, the authors evaluate the system using both the H.264/AVC (Advanced Video Coding) and the more recent High Efficiency Video Coding (HEVC) and their MVC extensions. Results show that, in an urban environment, LTE can accommodate a maximum of 93 users per cell, with adequate QoS, when transmitting 3D HEVC video at Common Intermediate Format (CIF) resolution. Moreover, cross-layer techniques can be used to reduce the QoS degradation as the user moves away from the eNodeB by transmitting lower resolution video.","PeriodicalId":422249,"journal":{"name":"Int. J. Wirel. Networks Broadband Technol.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Evaluation of Long Term Evolution Cellular Network Performance when Transmitting Multi-view Video Content\",\"authors\":\"C. J. Debono, Gloria-Anne Ellul\",\"doi\":\"10.4018/ijwnbt.2014070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Long Term Evolution (LTE) cellular technology provides higher data rates than its predecessor technologies. This advancement paves the way for more data services, including improved multimedia services. Three-dimensional (3D) video transmission is one such service that can benefit from LTE deployment. For a positive uptake of 3D video transmission, the network must provide a good Quality of Service (QoS). In this paper the authors evaluate the LTE network's performance when transmitting Multi-view Video Coding (MVC) using simulcast and inter-view prediction coding. Furthermore, the authors evaluate the system using both the H.264/AVC (Advanced Video Coding) and the more recent High Efficiency Video Coding (HEVC) and their MVC extensions. Results show that, in an urban environment, LTE can accommodate a maximum of 93 users per cell, with adequate QoS, when transmitting 3D HEVC video at Common Intermediate Format (CIF) resolution. Moreover, cross-layer techniques can be used to reduce the QoS degradation as the user moves away from the eNodeB by transmitting lower resolution video.\",\"PeriodicalId\":422249,\"journal\":{\"name\":\"Int. J. Wirel. Networks Broadband Technol.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wirel. Networks Broadband Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwnbt.2014070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wirel. Networks Broadband Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijwnbt.2014070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Long Term Evolution Cellular Network Performance when Transmitting Multi-view Video Content
The Long Term Evolution (LTE) cellular technology provides higher data rates than its predecessor technologies. This advancement paves the way for more data services, including improved multimedia services. Three-dimensional (3D) video transmission is one such service that can benefit from LTE deployment. For a positive uptake of 3D video transmission, the network must provide a good Quality of Service (QoS). In this paper the authors evaluate the LTE network's performance when transmitting Multi-view Video Coding (MVC) using simulcast and inter-view prediction coding. Furthermore, the authors evaluate the system using both the H.264/AVC (Advanced Video Coding) and the more recent High Efficiency Video Coding (HEVC) and their MVC extensions. Results show that, in an urban environment, LTE can accommodate a maximum of 93 users per cell, with adequate QoS, when transmitting 3D HEVC video at Common Intermediate Format (CIF) resolution. Moreover, cross-layer techniques can be used to reduce the QoS degradation as the user moves away from the eNodeB by transmitting lower resolution video.