一种针对异常对策的规模化免疫方法:将pH与cfengine相结合

Kyrre M. Begnum, M. Burgess
{"title":"一种针对异常对策的规模化免疫方法:将pH与cfengine相结合","authors":"Kyrre M. Begnum, M. Burgess","doi":"10.1109/INM.2003.1194158","DOIUrl":null,"url":null,"abstract":"We discuss the combination of two anomaly detection models, the Linux kernel module pH and cfengine, in order to create a multi-scaled approach to computer anomaly detection with automated response. By examining the time-average data from pH, we find the two systems to be conceptually complementary and to have compatible data models. Based on these findings, we build a simple prototype system and comment on how the same model could be extended to include other anomaly detection mechanisms.","PeriodicalId":273743,"journal":{"name":"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A scaled, immunological approach to anomaly countermeasures: combining pH with cfengine\",\"authors\":\"Kyrre M. Begnum, M. Burgess\",\"doi\":\"10.1109/INM.2003.1194158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the combination of two anomaly detection models, the Linux kernel module pH and cfengine, in order to create a multi-scaled approach to computer anomaly detection with automated response. By examining the time-average data from pH, we find the two systems to be conceptually complementary and to have compatible data models. Based on these findings, we build a simple prototype system and comment on how the same model could be extended to include other anomaly detection mechanisms.\",\"PeriodicalId\":273743,\"journal\":{\"name\":\"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2003.1194158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2003.1194158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们讨论了两个异常检测模型的组合,Linux内核模块pH和cfengine,以创建一个多尺度的方法,计算机异常检测与自动响应。通过检查pH的时间平均数据,我们发现这两个系统在概念上是互补的,并且具有兼容的数据模型。基于这些发现,我们构建了一个简单的原型系统,并评论了如何将相同的模型扩展到包括其他异常检测机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scaled, immunological approach to anomaly countermeasures: combining pH with cfengine
We discuss the combination of two anomaly detection models, the Linux kernel module pH and cfengine, in order to create a multi-scaled approach to computer anomaly detection with automated response. By examining the time-average data from pH, we find the two systems to be conceptually complementary and to have compatible data models. Based on these findings, we build a simple prototype system and comment on how the same model could be extended to include other anomaly detection mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信