CdSe纳米晶的尺寸依赖光谱

M. Bawendi
{"title":"CdSe纳米晶的尺寸依赖光谱","authors":"M. Bawendi","doi":"10.1364/shbs.1994.fb1","DOIUrl":null,"url":null,"abstract":"Semiconductor crystallites which are 10's of Angstroms show a striking evolution of electronic properties with size.1 These particles (quantum dots) are large enough to exhibit a crystalline core, but small enough that solid state electronic and vibrational band structure is not yet developed. We use a recently developed synthetic method for the synthesis of high quality nanometer size (1-10 nm) II-VI semiconductor crystallites with narrow size distributions (σ <5%), emphasizing CdSe.2 Optical characterization of their electronic structure using pump-probe techniques, luminescence, and DC Stark techniques reveals both molecular and bulk-like characteristics as well as properties which are unique to nanometer size crystallites. We observe a number of discrete electronic transitions, assign them as coming from the creation of delocalized \"particle-in-a-sphere\" states using the theory of Ref. 3, and study their dependence on crystallite diameter.4 The Stark experiments are also compatible with the absorbing states as delocalized symmetric states. We use time resolved fluoresence line narrowing spectroscopy to study the dynamics of electron-hole recombination. We observe significant changes in electron-LO phonon coupling with time, temperature, and crystallite size and suggest that the electron-hole pair dynamics following photoexcitation are dominated by surface effects which are especially important in the smaller crystallites where a large fraction of the atoms are \"surface\" atoms.5","PeriodicalId":443330,"journal":{"name":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size Dependent Spectroscopy of CdSe Nanocrystallites\",\"authors\":\"M. Bawendi\",\"doi\":\"10.1364/shbs.1994.fb1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor crystallites which are 10's of Angstroms show a striking evolution of electronic properties with size.1 These particles (quantum dots) are large enough to exhibit a crystalline core, but small enough that solid state electronic and vibrational band structure is not yet developed. We use a recently developed synthetic method for the synthesis of high quality nanometer size (1-10 nm) II-VI semiconductor crystallites with narrow size distributions (σ <5%), emphasizing CdSe.2 Optical characterization of their electronic structure using pump-probe techniques, luminescence, and DC Stark techniques reveals both molecular and bulk-like characteristics as well as properties which are unique to nanometer size crystallites. We observe a number of discrete electronic transitions, assign them as coming from the creation of delocalized \\\"particle-in-a-sphere\\\" states using the theory of Ref. 3, and study their dependence on crystallite diameter.4 The Stark experiments are also compatible with the absorbing states as delocalized symmetric states. We use time resolved fluoresence line narrowing spectroscopy to study the dynamics of electron-hole recombination. We observe significant changes in electron-LO phonon coupling with time, temperature, and crystallite size and suggest that the electron-hole pair dynamics following photoexcitation are dominated by surface effects which are especially important in the smaller crystallites where a large fraction of the atoms are \\\"surface\\\" atoms.5\",\"PeriodicalId\":443330,\"journal\":{\"name\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/shbs.1994.fb1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/shbs.1994.fb1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

10埃半导体晶体的电子性质随尺寸的变化有显著的变化这些粒子(量子点)大到足以形成晶体核心,但又小到不足以形成固态电子和振动带结构。我们使用一种新开发的合成方法合成了高质量的纳米尺寸(1-10 nm) II-VI半导体晶体,其尺寸分布窄(σ <5%),重点是CdSe.2利用泵浦探针技术、发光和DC Stark技术对其电子结构进行光学表征,揭示了纳米尺寸晶体的分子和块状特征以及独特的性质。我们观察了一些离散的电子跃迁,使用参考文献3的理论将它们指定为来自离域“球内粒子”状态的产生,并研究了它们与晶体直径的依赖关系Stark实验也与吸收态作为离域对称态兼容。我们用时间分辨荧光线窄化光谱研究了电子-空穴复合的动力学。我们观察到电子- lo声子耦合随时间、温度和晶体尺寸的显著变化,并表明光激发后的电子-空穴对动力学由表面效应主导,这在较小的晶体中尤其重要,因为大部分原子是“表面”原子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size Dependent Spectroscopy of CdSe Nanocrystallites
Semiconductor crystallites which are 10's of Angstroms show a striking evolution of electronic properties with size.1 These particles (quantum dots) are large enough to exhibit a crystalline core, but small enough that solid state electronic and vibrational band structure is not yet developed. We use a recently developed synthetic method for the synthesis of high quality nanometer size (1-10 nm) II-VI semiconductor crystallites with narrow size distributions (σ <5%), emphasizing CdSe.2 Optical characterization of their electronic structure using pump-probe techniques, luminescence, and DC Stark techniques reveals both molecular and bulk-like characteristics as well as properties which are unique to nanometer size crystallites. We observe a number of discrete electronic transitions, assign them as coming from the creation of delocalized "particle-in-a-sphere" states using the theory of Ref. 3, and study their dependence on crystallite diameter.4 The Stark experiments are also compatible with the absorbing states as delocalized symmetric states. We use time resolved fluoresence line narrowing spectroscopy to study the dynamics of electron-hole recombination. We observe significant changes in electron-LO phonon coupling with time, temperature, and crystallite size and suggest that the electron-hole pair dynamics following photoexcitation are dominated by surface effects which are especially important in the smaller crystallites where a large fraction of the atoms are "surface" atoms.5
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信