基于流形正则化的因果学习

Steven M. Hill, Chris J. Oates, Duncan A. J. Blythe, S. Mukherjee
{"title":"基于流形正则化的因果学习","authors":"Steven M. Hill, Chris J. Oates, Duncan A. J. Blythe, S. Mukherjee","doi":"10.17863/CAM.44718","DOIUrl":null,"url":null,"abstract":"This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as ‘labels’ and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user’s point of view.","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Causal Learning via Manifold Regularization\",\"authors\":\"Steven M. Hill, Chris J. Oates, Duncan A. J. Blythe, S. Mukherjee\",\"doi\":\"10.17863/CAM.44718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as ‘labels’ and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user’s point of view.\",\"PeriodicalId\":314696,\"journal\":{\"name\":\"Journal of machine learning research : JMLR\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of machine learning research : JMLR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17863/CAM.44718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.44718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文将因果结构估计作为一项机器学习任务。这个想法是将变量之间因果关系的指标视为“标签”,并利用感兴趣变量的可用数据为标签任务提供特征。背景科学知识或任何可用的干预性数据为一些因果关系提供了标签,其余的被视为未标记。为了说明关键思想,我们在流形正则化框架内开发了一种基于距离的方法(基于二元直方图)。我们在三种不同的生物数据集上展示了实证结果(包括可以通过实验干预验证因果关系的示例),这些数据集共同展示了该方法的有效性和普遍性,以及从用户的角度来看它的简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Learning via Manifold Regularization
This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as ‘labels’ and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user’s point of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信