Jiuyi Zhang, Y. Sua, Yongxiang Hu, Jeevanandha Ramanathan, Yu-ping Huang
{"title":"氧a波段吸收光谱与太阳光子计数和铌酸锂纳米光子电路","authors":"Jiuyi Zhang, Y. Sua, Yongxiang Hu, Jeevanandha Ramanathan, Yu-ping Huang","doi":"10.3389/frsen.2022.1064244","DOIUrl":null,"url":null,"abstract":"Oxygen A-band measurements can provide important information about cloud top height, cloud physical and optical thickness, and surface atmospheric pressure. So far, O2 A-band measurements are typically made with spectrometers at a spectral resolution of 40 p.m. (such as in the OCO-2 satellite) or a coarser resolution. This paper reports a new CubeSat measurement concept with higher spectral resolution over the O2 A-band using integrated photonic circuits and solar photon counting techniques. An integrated Micro-ring filter (MRR) chip with 10 p.m. resonant linewidth with an extinction ratio of 25 dB or higher is designed, fabricated, and used for precise measurements of the atmospheric oxygen A-band absorption line-shapes around 770 nm. With solar-photon counting and using a narrow-band filter made of an integrated, fast-swept MRR on lithium niobate on insulator (LNOI), we have demonstrated a high-resolution measurement of the O2 A-band absorption spectrum, exhibiting good agreement with the HITRAN database.","PeriodicalId":198378,"journal":{"name":"Frontiers in Remote Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen A-band absorption spectroscopy with solar photon counting and lithium niobate nanophotonic circuits\",\"authors\":\"Jiuyi Zhang, Y. Sua, Yongxiang Hu, Jeevanandha Ramanathan, Yu-ping Huang\",\"doi\":\"10.3389/frsen.2022.1064244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxygen A-band measurements can provide important information about cloud top height, cloud physical and optical thickness, and surface atmospheric pressure. So far, O2 A-band measurements are typically made with spectrometers at a spectral resolution of 40 p.m. (such as in the OCO-2 satellite) or a coarser resolution. This paper reports a new CubeSat measurement concept with higher spectral resolution over the O2 A-band using integrated photonic circuits and solar photon counting techniques. An integrated Micro-ring filter (MRR) chip with 10 p.m. resonant linewidth with an extinction ratio of 25 dB or higher is designed, fabricated, and used for precise measurements of the atmospheric oxygen A-band absorption line-shapes around 770 nm. With solar-photon counting and using a narrow-band filter made of an integrated, fast-swept MRR on lithium niobate on insulator (LNOI), we have demonstrated a high-resolution measurement of the O2 A-band absorption spectrum, exhibiting good agreement with the HITRAN database.\",\"PeriodicalId\":198378,\"journal\":{\"name\":\"Frontiers in Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsen.2022.1064244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2022.1064244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxygen A-band absorption spectroscopy with solar photon counting and lithium niobate nanophotonic circuits
Oxygen A-band measurements can provide important information about cloud top height, cloud physical and optical thickness, and surface atmospheric pressure. So far, O2 A-band measurements are typically made with spectrometers at a spectral resolution of 40 p.m. (such as in the OCO-2 satellite) or a coarser resolution. This paper reports a new CubeSat measurement concept with higher spectral resolution over the O2 A-band using integrated photonic circuits and solar photon counting techniques. An integrated Micro-ring filter (MRR) chip with 10 p.m. resonant linewidth with an extinction ratio of 25 dB or higher is designed, fabricated, and used for precise measurements of the atmospheric oxygen A-band absorption line-shapes around 770 nm. With solar-photon counting and using a narrow-band filter made of an integrated, fast-swept MRR on lithium niobate on insulator (LNOI), we have demonstrated a high-resolution measurement of the O2 A-band absorption spectrum, exhibiting good agreement with the HITRAN database.