{"title":"新的基于统一信息的神经元模型和模糊神经网络","authors":"A. Lemos, W. Caminhas, F. Gomide","doi":"10.1109/NAFIPS.2010.5548195","DOIUrl":null,"url":null,"abstract":"This paper suggests a uninorm-based neuron model and a neural network architecture using unineurons. The unineuron generalizes logical and/or neurons using weighted uninorms. Previous works have addressed fuzzy neurons within the framework of uninorms. This paper introduces a new unineuron model that uses weighted aggregation of the inputs, and computes its output using a conventional neuron. A feedforward fuzzy neural architecture is developed and used to model nonlinear dynamic systems. The resulting fuzzy neural network easily allows fuzzy rule insertion and/or extraction from its topology, process information following a fuzzy inference mechanism, and is an universal function approximator. Experimental results show that the uninorm-based network provides accurate results and performs better than several similar neural and alternative fuzzy function approximators.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"New uninorm-based neuron model and fuzzy neural networks\",\"authors\":\"A. Lemos, W. Caminhas, F. Gomide\",\"doi\":\"10.1109/NAFIPS.2010.5548195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper suggests a uninorm-based neuron model and a neural network architecture using unineurons. The unineuron generalizes logical and/or neurons using weighted uninorms. Previous works have addressed fuzzy neurons within the framework of uninorms. This paper introduces a new unineuron model that uses weighted aggregation of the inputs, and computes its output using a conventional neuron. A feedforward fuzzy neural architecture is developed and used to model nonlinear dynamic systems. The resulting fuzzy neural network easily allows fuzzy rule insertion and/or extraction from its topology, process information following a fuzzy inference mechanism, and is an universal function approximator. Experimental results show that the uninorm-based network provides accurate results and performs better than several similar neural and alternative fuzzy function approximators.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New uninorm-based neuron model and fuzzy neural networks
This paper suggests a uninorm-based neuron model and a neural network architecture using unineurons. The unineuron generalizes logical and/or neurons using weighted uninorms. Previous works have addressed fuzzy neurons within the framework of uninorms. This paper introduces a new unineuron model that uses weighted aggregation of the inputs, and computes its output using a conventional neuron. A feedforward fuzzy neural architecture is developed and used to model nonlinear dynamic systems. The resulting fuzzy neural network easily allows fuzzy rule insertion and/or extraction from its topology, process information following a fuzzy inference mechanism, and is an universal function approximator. Experimental results show that the uninorm-based network provides accurate results and performs better than several similar neural and alternative fuzzy function approximators.