{"title":"HiPR:用于快速增量FPGA编译的高级部分重构","authors":"Yuanlong Xiao, A. Hota, Dongjoon Park, A. DeHon","doi":"10.1109/FPL57034.2022.00022","DOIUrl":null,"url":null,"abstract":"Partial Reconfiguration (PR) is a key technique in the design of modern FPGAs. However, current PR tools heavily rely on the developers to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which is of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions instead of Verilog modules, which benefits the FPGA incremental compilation and automates the flow from C/C++ to bitstreams. By mapping Rosetta HLS benchmarks, the incremental compilation can be accelerated by 3–10× compared with Xilinx Vitis normal flow without performance loss.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HiPR: High-level Partial Reconfiguration for Fast Incremental FPGA Compilation\",\"authors\":\"Yuanlong Xiao, A. Hota, Dongjoon Park, A. DeHon\",\"doi\":\"10.1109/FPL57034.2022.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial Reconfiguration (PR) is a key technique in the design of modern FPGAs. However, current PR tools heavily rely on the developers to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which is of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions instead of Verilog modules, which benefits the FPGA incremental compilation and automates the flow from C/C++ to bitstreams. By mapping Rosetta HLS benchmarks, the incremental compilation can be accelerated by 3–10× compared with Xilinx Vitis normal flow without performance loss.\",\"PeriodicalId\":380116,\"journal\":{\"name\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL57034.2022.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HiPR: High-level Partial Reconfiguration for Fast Incremental FPGA Compilation
Partial Reconfiguration (PR) is a key technique in the design of modern FPGAs. However, current PR tools heavily rely on the developers to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which is of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions instead of Verilog modules, which benefits the FPGA incremental compilation and automates the flow from C/C++ to bitstreams. By mapping Rosetta HLS benchmarks, the incremental compilation can be accelerated by 3–10× compared with Xilinx Vitis normal flow without performance loss.