一种新的POLSAR图像分类计算机视觉算法

Zahra Faraji, G. Akbarizadeh
{"title":"一种新的POLSAR图像分类计算机视觉算法","authors":"Zahra Faraji, G. Akbarizadeh","doi":"10.1109/IKT.2015.7288776","DOIUrl":null,"url":null,"abstract":"Extracting good representations from POLSAR images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. The algorithm proposed in this paper, was applied on a POLSAR image and the result demonstrates that the extracted features using the proposed computer vision algorithm is an effective and useful method for classification of POLSAR images.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A new computer vision algorithm for classification of POLSAR images\",\"authors\":\"Zahra Faraji, G. Akbarizadeh\",\"doi\":\"10.1109/IKT.2015.7288776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting good representations from POLSAR images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. The algorithm proposed in this paper, was applied on a POLSAR image and the result demonstrates that the extracted features using the proposed computer vision algorithm is an effective and useful method for classification of POLSAR images.\",\"PeriodicalId\":338953,\"journal\":{\"name\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2015.7288776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从POLSAR图像中提取良好的表示对于许多计算机视觉任务至关重要。在本文中,我们提出了层次匹配追踪(HMP),它使用高效的匹配追踪编码器逐层构建特征层次结构。将本文提出的算法应用于一幅POLSAR图像,结果表明,利用该算法提取的特征对POLSAR图像进行分类是一种有效而实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new computer vision algorithm for classification of POLSAR images
Extracting good representations from POLSAR images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. The algorithm proposed in this paper, was applied on a POLSAR image and the result demonstrates that the extracted features using the proposed computer vision algorithm is an effective and useful method for classification of POLSAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信