{"title":"基于人工神经网络的模型预测控制鲁棒性整定方法","authors":"Houssam Moumouh, N. Langlois, Madjid Haddad","doi":"10.1109/MED48518.2020.9183204","DOIUrl":null,"url":null,"abstract":"A successful implementation of Model Predictive Control (MPC) requires appropriately tuned parameters. This paper presents a novel tuning approach based on Artificial Neural Network (ANN). To build the data learning base of the ANN, we adopted the Particle Swarm Optimisation (PSO) method, and we used the reliable algorithm, Online Sequential Extreme-Learning-Machine (OS-ELM) to learn the ANN. The objective of this work is to show that good tuning of MPC parameters makes it possible to reach closed-loop stability and ensure robustness against disturbances and sensor noises, without using robustification approaches in addition to MPC. The effectiveness of our approach is brought to light by comparing the obtained performances to other MPC tuning approaches without disturbances, and also to a robustified Generalized Predictive Control (GPC) using Youla parametrisation in the presence of disturbances.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robustness of Model Predictive Control Using a Novel Tuning Approach Based on Artificial Neural Network\",\"authors\":\"Houssam Moumouh, N. Langlois, Madjid Haddad\",\"doi\":\"10.1109/MED48518.2020.9183204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A successful implementation of Model Predictive Control (MPC) requires appropriately tuned parameters. This paper presents a novel tuning approach based on Artificial Neural Network (ANN). To build the data learning base of the ANN, we adopted the Particle Swarm Optimisation (PSO) method, and we used the reliable algorithm, Online Sequential Extreme-Learning-Machine (OS-ELM) to learn the ANN. The objective of this work is to show that good tuning of MPC parameters makes it possible to reach closed-loop stability and ensure robustness against disturbances and sensor noises, without using robustification approaches in addition to MPC. The effectiveness of our approach is brought to light by comparing the obtained performances to other MPC tuning approaches without disturbances, and also to a robustified Generalized Predictive Control (GPC) using Youla parametrisation in the presence of disturbances.\",\"PeriodicalId\":418518,\"journal\":{\"name\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED48518.2020.9183204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robustness of Model Predictive Control Using a Novel Tuning Approach Based on Artificial Neural Network
A successful implementation of Model Predictive Control (MPC) requires appropriately tuned parameters. This paper presents a novel tuning approach based on Artificial Neural Network (ANN). To build the data learning base of the ANN, we adopted the Particle Swarm Optimisation (PSO) method, and we used the reliable algorithm, Online Sequential Extreme-Learning-Machine (OS-ELM) to learn the ANN. The objective of this work is to show that good tuning of MPC parameters makes it possible to reach closed-loop stability and ensure robustness against disturbances and sensor noises, without using robustification approaches in addition to MPC. The effectiveness of our approach is brought to light by comparing the obtained performances to other MPC tuning approaches without disturbances, and also to a robustified Generalized Predictive Control (GPC) using Youla parametrisation in the presence of disturbances.