在光线追踪参数曲面上

Dan Toth
{"title":"在光线追踪参数曲面上","authors":"Dan Toth","doi":"10.1145/325334.325233","DOIUrl":null,"url":null,"abstract":"A new method for ray tracing parametric surfaces is presented. The new algorithm solves the ray surface intersection directly using multivariate Newton iteration. This provides enough generality to render surfaces which could not be ray traced using existing methods. To overcome the problem of finding a starting point for the Newton algorithm, techniques from Interval Analysis are employed. The results are presented in terms of solving a general nonlinear system of equations f(x)= 0, and thus can be extended to a large class of problems which arise in computer graphics.","PeriodicalId":163416,"journal":{"name":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":"{\"title\":\"On ray tracing parametric surfaces\",\"authors\":\"Dan Toth\",\"doi\":\"10.1145/325334.325233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for ray tracing parametric surfaces is presented. The new algorithm solves the ray surface intersection directly using multivariate Newton iteration. This provides enough generality to render surfaces which could not be ray traced using existing methods. To overcome the problem of finding a starting point for the Newton algorithm, techniques from Interval Analysis are employed. The results are presented in terms of solving a general nonlinear system of equations f(x)= 0, and thus can be extended to a large class of problems which arise in computer graphics.\",\"PeriodicalId\":163416,\"journal\":{\"name\":\"Proceedings of the 12th annual conference on Computer graphics and interactive techniques\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"196\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/325334.325233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325334.325233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 196

摘要

提出了一种射线追踪参数曲面的新方法。该算法采用多元牛顿迭代法直接求解射线曲面相交。这提供了足够的通用性来渲染不能使用现有方法进行光线追踪的表面。为了克服牛顿算法寻找起点的问题,采用了区间分析的技术。这些结果是以求解一般非线性方程组f(x)= 0的形式提出的,因此可以推广到计算机图形学中出现的大类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On ray tracing parametric surfaces
A new method for ray tracing parametric surfaces is presented. The new algorithm solves the ray surface intersection directly using multivariate Newton iteration. This provides enough generality to render surfaces which could not be ray traced using existing methods. To overcome the problem of finding a starting point for the Newton algorithm, techniques from Interval Analysis are employed. The results are presented in terms of solving a general nonlinear system of equations f(x)= 0, and thus can be extended to a large class of problems which arise in computer graphics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信