简单随机对策的一般策略改进方法

D. Auger, X. B. D. Montjoye, Y. Strozecki
{"title":"简单随机对策的一般策略改进方法","authors":"D. Auger, X. B. D. Montjoye, Y. Strozecki","doi":"10.4230/LIPIcs.MFCS.2021.12","DOIUrl":null,"url":null,"abstract":"We present a generic strategy iteration algorithm (GSIA) to find an optimal strategy of a simple stochastic game (SSG). We prove the correctness of GSIA, and derive a general complexity bound, which implies and improves on the results of several articles. First, we remove the assumption that the SSG is stopping, which is usually obtained by a polynomial blowup of the game. Second, we prove a tight bound on the denominator of the values associated to a strategy, and use it to prove that all strategy iteration algorithms are in fact fixed parameter tractable in the number of random vertices. All known strategy iteration algorithms can be seen as instances of GSIA, which allows to analyze the complexity of converge from below by Condon and to propose a class of algorithms generalising Gimbert and Horn's algorithm. These algorithms require less than $r!$ iterations in general and less iterations than the current best deterministic algorithm for binary SSGs given by Ibsen-Jensen and Miltersen.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Generic Strategy Improvement Method for Simple Stochastic Games\",\"authors\":\"D. Auger, X. B. D. Montjoye, Y. Strozecki\",\"doi\":\"10.4230/LIPIcs.MFCS.2021.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generic strategy iteration algorithm (GSIA) to find an optimal strategy of a simple stochastic game (SSG). We prove the correctness of GSIA, and derive a general complexity bound, which implies and improves on the results of several articles. First, we remove the assumption that the SSG is stopping, which is usually obtained by a polynomial blowup of the game. Second, we prove a tight bound on the denominator of the values associated to a strategy, and use it to prove that all strategy iteration algorithms are in fact fixed parameter tractable in the number of random vertices. All known strategy iteration algorithms can be seen as instances of GSIA, which allows to analyze the complexity of converge from below by Condon and to propose a class of algorithms generalising Gimbert and Horn's algorithm. These algorithms require less than $r!$ iterations in general and less iterations than the current best deterministic algorithm for binary SSGs given by Ibsen-Jensen and Miltersen.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2021.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种通用策略迭代算法(GSIA)来求解简单随机博弈(SSG)的最优策略。我们证明了GSIA的正确性,并推导出了一个一般的复杂度界,它隐含和改进了一些文章的结果。首先,我们去除SSG停止的假设,这通常是通过多项式放大游戏来获得的。其次,我们证明了与策略相关的值的分母上的紧界,并用它来证明所有策略迭代算法实际上在随机顶点的数量上是固定参数可处理的。所有已知的策略迭代算法都可以看作是GSIA的实例,它允许Condon从下面分析收敛的复杂性,并提出一类推广Gimbert和Horn算法的算法。这些算法只需要不到$r!一般$迭代,迭代次数少于当前由Ibsen-Jensen和Miltersen给出的二进制ssg的最佳确定性算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generic Strategy Improvement Method for Simple Stochastic Games
We present a generic strategy iteration algorithm (GSIA) to find an optimal strategy of a simple stochastic game (SSG). We prove the correctness of GSIA, and derive a general complexity bound, which implies and improves on the results of several articles. First, we remove the assumption that the SSG is stopping, which is usually obtained by a polynomial blowup of the game. Second, we prove a tight bound on the denominator of the values associated to a strategy, and use it to prove that all strategy iteration algorithms are in fact fixed parameter tractable in the number of random vertices. All known strategy iteration algorithms can be seen as instances of GSIA, which allows to analyze the complexity of converge from below by Condon and to propose a class of algorithms generalising Gimbert and Horn's algorithm. These algorithms require less than $r!$ iterations in general and less iterations than the current best deterministic algorithm for binary SSGs given by Ibsen-Jensen and Miltersen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信