使用librec-auto:动手教程进行公平推荐的实验

R. Burke, M. Mansoury, Nasim Sonboli
{"title":"使用librec-auto:动手教程进行公平推荐的实验","authors":"R. Burke, M. Mansoury, Nasim Sonboli","doi":"10.1145/3351095.3375670","DOIUrl":null,"url":null,"abstract":"The field of machine learning fairness has developed metrics, methodologies, and data sets for experimenting with classification algorithms. However, equivalent research is lacking in the area of personalized recommender systems. This 180-minute hands-on tutorial will introduce participants to concepts in fairness-aware recommendation, and metrics and methodologies in evaluating recommendation fairness. Participants will also gain hands-on experience with conducting fairness-aware recommendation experiments with the LibRec recommendation system using the \\libauto{} scripting platform, and learn the steps required to configure their own experiments, incorporate their own data sets, and design their own algorithms and metrics.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimentation with fairness-aware recommendation using librec-auto: hands-on tutorial\",\"authors\":\"R. Burke, M. Mansoury, Nasim Sonboli\",\"doi\":\"10.1145/3351095.3375670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of machine learning fairness has developed metrics, methodologies, and data sets for experimenting with classification algorithms. However, equivalent research is lacking in the area of personalized recommender systems. This 180-minute hands-on tutorial will introduce participants to concepts in fairness-aware recommendation, and metrics and methodologies in evaluating recommendation fairness. Participants will also gain hands-on experience with conducting fairness-aware recommendation experiments with the LibRec recommendation system using the \\\\libauto{} scripting platform, and learn the steps required to configure their own experiments, incorporate their own data sets, and design their own algorithms and metrics.\",\"PeriodicalId\":377829,\"journal\":{\"name\":\"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351095.3375670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3375670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器学习公平性领域已经开发了用于实验分类算法的度量、方法和数据集。然而,在个性化推荐系统领域缺乏相应的研究。这个180分钟的实践教程将向参与者介绍公平意识推荐的概念,以及评估推荐公平性的指标和方法。参与者还将获得使用\libauto{}脚本平台使用LibRec推荐系统进行公平意识推荐实验的实践经验,并学习配置他们自己的实验所需的步骤,纳入他们自己的数据集,并设计他们自己的算法和指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimentation with fairness-aware recommendation using librec-auto: hands-on tutorial
The field of machine learning fairness has developed metrics, methodologies, and data sets for experimenting with classification algorithms. However, equivalent research is lacking in the area of personalized recommender systems. This 180-minute hands-on tutorial will introduce participants to concepts in fairness-aware recommendation, and metrics and methodologies in evaluating recommendation fairness. Participants will also gain hands-on experience with conducting fairness-aware recommendation experiments with the LibRec recommendation system using the \libauto{} scripting platform, and learn the steps required to configure their own experiments, incorporate their own data sets, and design their own algorithms and metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信