协同滤波的解纠缠负采样

Riwei Lai, L. Chen, Yuhan Zhao, R. Chen, Qilong Han
{"title":"协同滤波的解纠缠负采样","authors":"Riwei Lai, L. Chen, Yuhan Zhao, R. Chen, Qilong Han","doi":"10.1145/3539597.3570419","DOIUrl":null,"url":null,"abstract":"Negative sampling is essential for implicit collaborative filtering to generate negative samples from massive unlabeled data. Unlike existing strategies that consider items as a whole when selecting negative items, we argue that normally user interactions are mainly driven by some relevant, but not all, factors of items, leading to a new direction of negative sampling. In this paper, we introduce a novel disentangled negative sampling (DENS) method. We first disentangle the relevant and irrelevant factors of positive and negative items using a hierarchical gating module. Next, we design a factor-aware sampling strategy to identify the best negative samples by contrasting the relevant factors while keeping irrelevant factors similar. To ensure the credibility of the disentanglement, we propose to adopt contrastive learning and introduce four pairwise contrastive tasks, which enable to learn better disentangled representations of the relevant and irrelevant factors and remove the dependency on ground truth. Extensive experiments on five real-world datasets demonstrate the superiority of DENS against several state-of-the-art competitors, achieving over 7% improvement over the strongest baseline in terms of Recall@20 and NDCG@20. Our code is publically available at https://github.com/Riwei-HEU/DENS .","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Disentangled Negative Sampling for Collaborative Filtering\",\"authors\":\"Riwei Lai, L. Chen, Yuhan Zhao, R. Chen, Qilong Han\",\"doi\":\"10.1145/3539597.3570419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative sampling is essential for implicit collaborative filtering to generate negative samples from massive unlabeled data. Unlike existing strategies that consider items as a whole when selecting negative items, we argue that normally user interactions are mainly driven by some relevant, but not all, factors of items, leading to a new direction of negative sampling. In this paper, we introduce a novel disentangled negative sampling (DENS) method. We first disentangle the relevant and irrelevant factors of positive and negative items using a hierarchical gating module. Next, we design a factor-aware sampling strategy to identify the best negative samples by contrasting the relevant factors while keeping irrelevant factors similar. To ensure the credibility of the disentanglement, we propose to adopt contrastive learning and introduce four pairwise contrastive tasks, which enable to learn better disentangled representations of the relevant and irrelevant factors and remove the dependency on ground truth. Extensive experiments on five real-world datasets demonstrate the superiority of DENS against several state-of-the-art competitors, achieving over 7% improvement over the strongest baseline in terms of Recall@20 and NDCG@20. Our code is publically available at https://github.com/Riwei-HEU/DENS .\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3570419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

负采样是隐式协同过滤从大量未标记数据中生成负样本的必要条件。与现有的在选择负面物品时将物品作为一个整体考虑的策略不同,我们认为通常用户交互主要是由物品的一些相关因素驱动的,但不是全部,这导致了负面抽样的新方向。本文提出了一种新的解纠缠负采样(DENS)方法。我们首先使用分层门控模块对积极和消极项目的相关和不相关因素进行分解。接下来,我们设计了一个因子感知采样策略,通过对比相关因素来识别最佳负样本,同时保持无关因素相似。为了确保解纠缠的可信度,我们建议采用对比学习并引入四个成对对比任务,这使得能够更好地学习相关和不相关因素的解纠缠表征,并消除对基础真理的依赖。在五个真实数据集上进行的大量实验表明,与几个最先进的竞争对手相比,DENS具有优势,在Recall@20和NDCG@20方面比最强基线提高了7%以上。我们的代码可以在https://github.com/Riwei-HEU/DENS上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangled Negative Sampling for Collaborative Filtering
Negative sampling is essential for implicit collaborative filtering to generate negative samples from massive unlabeled data. Unlike existing strategies that consider items as a whole when selecting negative items, we argue that normally user interactions are mainly driven by some relevant, but not all, factors of items, leading to a new direction of negative sampling. In this paper, we introduce a novel disentangled negative sampling (DENS) method. We first disentangle the relevant and irrelevant factors of positive and negative items using a hierarchical gating module. Next, we design a factor-aware sampling strategy to identify the best negative samples by contrasting the relevant factors while keeping irrelevant factors similar. To ensure the credibility of the disentanglement, we propose to adopt contrastive learning and introduce four pairwise contrastive tasks, which enable to learn better disentangled representations of the relevant and irrelevant factors and remove the dependency on ground truth. Extensive experiments on five real-world datasets demonstrate the superiority of DENS against several state-of-the-art competitors, achieving over 7% improvement over the strongest baseline in terms of Recall@20 and NDCG@20. Our code is publically available at https://github.com/Riwei-HEU/DENS .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信