{"title":"网络编码的对抗性纠错:模型和度量","authors":"Danilo Silva, F. Kschischang","doi":"10.1109/ALLERTON.2008.4797703","DOIUrl":null,"url":null,"abstract":"The problem of error correction in both coherent and noncoherent network coding is considered under an adversarial model. For coherent network coding, where knowledge of the network topology and network code is assumed at the source and destination nodes, the error correction capability of an (outer) code is succinctly described by the rank metric; as a consequence, it is shown that universal network error correcting codes achieving the Singleton bound can be easily constructed and efficiently decoded. For noncoherent network coding, where knowledge of the network topology and network code is not assumed, the error correction capability of a (subspace) code is given exactly by a modified subspace metric, which is closely related to, but different than, the subspace metric of Kotter and Kschischang. In particular, in the case of a non-constantdimension code, the decoder associated with the modified metric is shown to correct more errors then a minimum subspace distance decoder.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Adversarial error correction for network coding: Models and metrics\",\"authors\":\"Danilo Silva, F. Kschischang\",\"doi\":\"10.1109/ALLERTON.2008.4797703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of error correction in both coherent and noncoherent network coding is considered under an adversarial model. For coherent network coding, where knowledge of the network topology and network code is assumed at the source and destination nodes, the error correction capability of an (outer) code is succinctly described by the rank metric; as a consequence, it is shown that universal network error correcting codes achieving the Singleton bound can be easily constructed and efficiently decoded. For noncoherent network coding, where knowledge of the network topology and network code is not assumed, the error correction capability of a (subspace) code is given exactly by a modified subspace metric, which is closely related to, but different than, the subspace metric of Kotter and Kschischang. In particular, in the case of a non-constantdimension code, the decoder associated with the modified metric is shown to correct more errors then a minimum subspace distance decoder.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adversarial error correction for network coding: Models and metrics
The problem of error correction in both coherent and noncoherent network coding is considered under an adversarial model. For coherent network coding, where knowledge of the network topology and network code is assumed at the source and destination nodes, the error correction capability of an (outer) code is succinctly described by the rank metric; as a consequence, it is shown that universal network error correcting codes achieving the Singleton bound can be easily constructed and efficiently decoded. For noncoherent network coding, where knowledge of the network topology and network code is not assumed, the error correction capability of a (subspace) code is given exactly by a modified subspace metric, which is closely related to, but different than, the subspace metric of Kotter and Kschischang. In particular, in the case of a non-constantdimension code, the decoder associated with the modified metric is shown to correct more errors then a minimum subspace distance decoder.