Shashank Soi, S. Singh, Rajendra Singh, Ashok Kumar
{"title":"Ku波段对流层散射通信链路分析","authors":"Shashank Soi, S. Singh, Rajendra Singh, Ashok Kumar","doi":"10.1109/IMaRC45935.2019.9118656","DOIUrl":null,"url":null,"abstract":"Rapid growth in the capabilities of Satellite Communication resulted in even greater growth in the information needs. However, resources available for Satellite Communication commercially were quite expensive. To combine ease of use with high performance communication links, Troposcatter communication system for over-the-horizon communication became significant. Initially Troposcatter communication was confined to lower frequency bands such as the S and C bands, but the Tropo links at these frequencies used large antenna terminals and suffered from frequency scarcity. Shift to high frequencies, like Ku band Troposcatter at 15 GHz eliminates the bandwidth constraints of the lower frequency bands with reduced equipment sizes but at the same time possess challenges such as higher signal attenuation due to rain droplets and path loss due to higher order frequencies. In this paper the path loss and maximum possible data rates of Troposcatter communication at Ku band with respect to the current possible technical resources has been estimated. The significance of rain scattering for various link availabilities has been considered.","PeriodicalId":338001,"journal":{"name":"2019 IEEE MTT-S International Microwave and RF Conference (IMARC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Link Analysis of Ku Band Troposcatter Communication\",\"authors\":\"Shashank Soi, S. Singh, Rajendra Singh, Ashok Kumar\",\"doi\":\"10.1109/IMaRC45935.2019.9118656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid growth in the capabilities of Satellite Communication resulted in even greater growth in the information needs. However, resources available for Satellite Communication commercially were quite expensive. To combine ease of use with high performance communication links, Troposcatter communication system for over-the-horizon communication became significant. Initially Troposcatter communication was confined to lower frequency bands such as the S and C bands, but the Tropo links at these frequencies used large antenna terminals and suffered from frequency scarcity. Shift to high frequencies, like Ku band Troposcatter at 15 GHz eliminates the bandwidth constraints of the lower frequency bands with reduced equipment sizes but at the same time possess challenges such as higher signal attenuation due to rain droplets and path loss due to higher order frequencies. In this paper the path loss and maximum possible data rates of Troposcatter communication at Ku band with respect to the current possible technical resources has been estimated. The significance of rain scattering for various link availabilities has been considered.\",\"PeriodicalId\":338001,\"journal\":{\"name\":\"2019 IEEE MTT-S International Microwave and RF Conference (IMARC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Microwave and RF Conference (IMARC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMaRC45935.2019.9118656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave and RF Conference (IMARC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMaRC45935.2019.9118656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Link Analysis of Ku Band Troposcatter Communication
Rapid growth in the capabilities of Satellite Communication resulted in even greater growth in the information needs. However, resources available for Satellite Communication commercially were quite expensive. To combine ease of use with high performance communication links, Troposcatter communication system for over-the-horizon communication became significant. Initially Troposcatter communication was confined to lower frequency bands such as the S and C bands, but the Tropo links at these frequencies used large antenna terminals and suffered from frequency scarcity. Shift to high frequencies, like Ku band Troposcatter at 15 GHz eliminates the bandwidth constraints of the lower frequency bands with reduced equipment sizes but at the same time possess challenges such as higher signal attenuation due to rain droplets and path loss due to higher order frequencies. In this paper the path loss and maximum possible data rates of Troposcatter communication at Ku band with respect to the current possible technical resources has been estimated. The significance of rain scattering for various link availabilities has been considered.