Marina González Vayá, Sergio Grammatico, G. Andersson, J. Lygeros
{"title":"在大量插电式电动汽车中自私的代价","authors":"Marina González Vayá, Sergio Grammatico, G. Andersson, J. Lygeros","doi":"10.1109/CDC.2015.7403250","DOIUrl":null,"url":null,"abstract":"We consider the problem of optimally scheduling the flexible electricity demand of a fleet of plug-in electric vehicles (PEVs). More specifically, we analyze the solutions of the following charging optimization problems: the welfare-optimal problem, where the overall system cost is minimized; the fleet-optimal problem, where the charging cost of the fleet as a whole is minimized by a central agent, that is the PEV aggregator; the selfish-optimal problem, where the noncooperative PEVs aim at minimizing their individual charging cost. For a homogenous PEV fleet and a simplified problem setup, we show that the solutions of the three different approaches correspond to different valley-filling results. A main insight is that, as the population of PEVs grows, the selfish-optimal solution converges to the welfare-optimal solution. On the other hand, we show that the centralized fleet-optimal solution of the PEV aggregation can be recovered via decentralized selfish-optimal solutions with respect to an appropriate price signal as the population size grows. Finally, we demonstrate our technical results on a realistic PEV fleet case study.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On the price of being selfish in large populations of plug-in electric vehicles\",\"authors\":\"Marina González Vayá, Sergio Grammatico, G. Andersson, J. Lygeros\",\"doi\":\"10.1109/CDC.2015.7403250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of optimally scheduling the flexible electricity demand of a fleet of plug-in electric vehicles (PEVs). More specifically, we analyze the solutions of the following charging optimization problems: the welfare-optimal problem, where the overall system cost is minimized; the fleet-optimal problem, where the charging cost of the fleet as a whole is minimized by a central agent, that is the PEV aggregator; the selfish-optimal problem, where the noncooperative PEVs aim at minimizing their individual charging cost. For a homogenous PEV fleet and a simplified problem setup, we show that the solutions of the three different approaches correspond to different valley-filling results. A main insight is that, as the population of PEVs grows, the selfish-optimal solution converges to the welfare-optimal solution. On the other hand, we show that the centralized fleet-optimal solution of the PEV aggregation can be recovered via decentralized selfish-optimal solutions with respect to an appropriate price signal as the population size grows. Finally, we demonstrate our technical results on a realistic PEV fleet case study.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7403250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the price of being selfish in large populations of plug-in electric vehicles
We consider the problem of optimally scheduling the flexible electricity demand of a fleet of plug-in electric vehicles (PEVs). More specifically, we analyze the solutions of the following charging optimization problems: the welfare-optimal problem, where the overall system cost is minimized; the fleet-optimal problem, where the charging cost of the fleet as a whole is minimized by a central agent, that is the PEV aggregator; the selfish-optimal problem, where the noncooperative PEVs aim at minimizing their individual charging cost. For a homogenous PEV fleet and a simplified problem setup, we show that the solutions of the three different approaches correspond to different valley-filling results. A main insight is that, as the population of PEVs grows, the selfish-optimal solution converges to the welfare-optimal solution. On the other hand, we show that the centralized fleet-optimal solution of the PEV aggregation can be recovered via decentralized selfish-optimal solutions with respect to an appropriate price signal as the population size grows. Finally, we demonstrate our technical results on a realistic PEV fleet case study.