最优反应坐标:变分表征和稀疏计算

A. Bittracher, Mattes Mollenhauer, P. Koltai, C. Schütte
{"title":"最优反应坐标:变分表征和稀疏计算","authors":"A. Bittracher, Mattes Mollenhauer, P. Koltai, C. Schütte","doi":"10.1137/21m1448367","DOIUrl":null,"url":null,"abstract":"Reaction Coordinates (RCs) are indicators of hidden, low-dimensional mechanisms that govern the long-term behavior of high-dimensional stochastic processes. We present a novel and general variational characterization of optimal RCs and provide conditions for their existence. Optimal RCs are minimizers of a certain loss function and reduced models based on them guarantee very good approximation of the long-term dynamics of the original high-dimensional process. We show that, for slow-fast systems, metastable systems, and other systems with known good RCs, the novel theory reproduces previous insight. Remarkably, the numerical effort required to evaluate the loss function scales only with the complexity of the underlying, low-dimensional mechanism, and not with that of the full system. The theory provided lays the foundation for an efficient and data-sparse computation of RCs via modern machine learning techniques.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Reaction Coordinates: Variational Characterization and Sparse Computation\",\"authors\":\"A. Bittracher, Mattes Mollenhauer, P. Koltai, C. Schütte\",\"doi\":\"10.1137/21m1448367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reaction Coordinates (RCs) are indicators of hidden, low-dimensional mechanisms that govern the long-term behavior of high-dimensional stochastic processes. We present a novel and general variational characterization of optimal RCs and provide conditions for their existence. Optimal RCs are minimizers of a certain loss function and reduced models based on them guarantee very good approximation of the long-term dynamics of the original high-dimensional process. We show that, for slow-fast systems, metastable systems, and other systems with known good RCs, the novel theory reproduces previous insight. Remarkably, the numerical effort required to evaluate the loss function scales only with the complexity of the underlying, low-dimensional mechanism, and not with that of the full system. The theory provided lays the foundation for an efficient and data-sparse computation of RCs via modern machine learning techniques.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1448367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1448367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

反应坐标(RCs)是控制高维随机过程长期行为的隐藏的低维机制的指标。我们提出了一种新的和一般的最优RCs的变分特征,并提供了它们存在的条件。最优rc是某种损失函数的最小值,基于它们的简化模型可以很好地逼近原始高维过程的长期动态。我们表明,对于慢速系统,亚稳态系统和其他已知具有良好rc的系统,新理论再现了以前的见解。值得注意的是,评估损失函数所需的数值努力只与潜在的低维机制的复杂性有关,而与整个系统的复杂性无关。提供的理论为通过现代机器学习技术高效和数据稀疏的rc计算奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Reaction Coordinates: Variational Characterization and Sparse Computation
Reaction Coordinates (RCs) are indicators of hidden, low-dimensional mechanisms that govern the long-term behavior of high-dimensional stochastic processes. We present a novel and general variational characterization of optimal RCs and provide conditions for their existence. Optimal RCs are minimizers of a certain loss function and reduced models based on them guarantee very good approximation of the long-term dynamics of the original high-dimensional process. We show that, for slow-fast systems, metastable systems, and other systems with known good RCs, the novel theory reproduces previous insight. Remarkably, the numerical effort required to evaluate the loss function scales only with the complexity of the underlying, low-dimensional mechanism, and not with that of the full system. The theory provided lays the foundation for an efficient and data-sparse computation of RCs via modern machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信