基于向量的数据在协变量分布移位后改善了左右眼动追踪分类器的性能

Brian Xiang, Abdelrahman Abdelmonsef
{"title":"基于向量的数据在协变量分布移位后改善了左右眼动追踪分类器的性能","authors":"Brian Xiang, Abdelrahman Abdelmonsef","doi":"10.48550/arXiv.2208.00465","DOIUrl":null,"url":null,"abstract":"The main challenges of using electroencephalogram (EEG) signals to make eye-tracking (ET) predictions are the differences in distributional patterns between benchmark data and real-world data and the noise resulting from the unintended interference of brain signals from multiple sources. Increasing the robustness of machine learning models in predicting eye-tracking position from EEG data is therefore integral for both research and consumer use. In medical research, the usage of more complicated data collection methods to test for simpler tasks has been explored to address this very issue. In this study, we propose a fine-grain data approach for EEG-ET data collection in order to create more robust benchmarking. We train machine learning models utilizing both coarse-grain and fine-grain data and compare their accuracies when tested on data of similar/different distributional patterns in order to determine how susceptible EEG-ET benchmarks are to differences in distributional data. We apply a covariate distributional shift to test for this susceptibility. Results showed that models trained on fine-grain, vector-based data were less susceptible to distributional shifts than models trained on coarse-grain, binary-classified data.","PeriodicalId":129626,"journal":{"name":"Interacción","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vector-Based Data Improves Left-Right Eye-Tracking Classifier Performance After a Covariate Distributional Shift\",\"authors\":\"Brian Xiang, Abdelrahman Abdelmonsef\",\"doi\":\"10.48550/arXiv.2208.00465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main challenges of using electroencephalogram (EEG) signals to make eye-tracking (ET) predictions are the differences in distributional patterns between benchmark data and real-world data and the noise resulting from the unintended interference of brain signals from multiple sources. Increasing the robustness of machine learning models in predicting eye-tracking position from EEG data is therefore integral for both research and consumer use. In medical research, the usage of more complicated data collection methods to test for simpler tasks has been explored to address this very issue. In this study, we propose a fine-grain data approach for EEG-ET data collection in order to create more robust benchmarking. We train machine learning models utilizing both coarse-grain and fine-grain data and compare their accuracies when tested on data of similar/different distributional patterns in order to determine how susceptible EEG-ET benchmarks are to differences in distributional data. We apply a covariate distributional shift to test for this susceptibility. Results showed that models trained on fine-grain, vector-based data were less susceptible to distributional shifts than models trained on coarse-grain, binary-classified data.\",\"PeriodicalId\":129626,\"journal\":{\"name\":\"Interacción\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interacción\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.00465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interacción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.00465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用脑电图(EEG)信号进行眼动追踪(ET)预测的主要挑战是基准数据和真实数据之间分布模式的差异以及来自多个来源的大脑信号的意外干扰所产生的噪声。因此,提高机器学习模型在从脑电图数据预测眼球追踪位置方面的鲁棒性对于研究和消费者使用都是不可或缺的。在医学研究中,已经探索了使用更复杂的数据收集方法来测试更简单的任务来解决这个问题。在本研究中,我们提出了一种用于EEG-ET数据收集的细粒度数据方法,以创建更健壮的基准测试。我们利用粗粒度和细粒度数据训练机器学习模型,并在相似/不同分布模式的数据上测试时比较它们的准确性,以确定EEG-ET基准对分布数据差异的影响程度。我们应用协变量分布移位来检验这种敏感性。结果表明,与粗粒度、二分类数据训练的模型相比,基于细粒度、基于向量的数据训练的模型更不容易受到分布位移的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-Based Data Improves Left-Right Eye-Tracking Classifier Performance After a Covariate Distributional Shift
The main challenges of using electroencephalogram (EEG) signals to make eye-tracking (ET) predictions are the differences in distributional patterns between benchmark data and real-world data and the noise resulting from the unintended interference of brain signals from multiple sources. Increasing the robustness of machine learning models in predicting eye-tracking position from EEG data is therefore integral for both research and consumer use. In medical research, the usage of more complicated data collection methods to test for simpler tasks has been explored to address this very issue. In this study, we propose a fine-grain data approach for EEG-ET data collection in order to create more robust benchmarking. We train machine learning models utilizing both coarse-grain and fine-grain data and compare their accuracies when tested on data of similar/different distributional patterns in order to determine how susceptible EEG-ET benchmarks are to differences in distributional data. We apply a covariate distributional shift to test for this susceptibility. Results showed that models trained on fine-grain, vector-based data were less susceptible to distributional shifts than models trained on coarse-grain, binary-classified data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信