稀疏分割:二元或三级预测因子的非线性回归,应用于关联研究

D. Speed, Simon Tavar'e
{"title":"稀疏分割:二元或三级预测因子的非线性回归,应用于关联研究","authors":"D. Speed, Simon Tavar'e","doi":"10.1214/10-AOAS411","DOIUrl":null,"url":null,"abstract":"This paper presents Sparse Partitioning, a Bayesian method for identifying predictors that either individually or in combination with others affect a response variable. The method is designed for regression problems involving binary or tertiary predictors and allows the number of predictors to exceed the size of the sample, two properties which make it well suited for association studies. Sparse Partitioning differs from other regression methods by placing no restrictions on how the predictors may influence the response. To compensate for this generality, Sparse Partitioning implements a novel way of exploring the model space. It searches for high posterior probability partitions of the predictor set, where each partition defines groups of predictors that jointly influence the response. The result is a robust method that requires no prior knowledge of the true predictor--response relationship. Testing on simulated data suggests Sparse Partitioning will typically match the performance of an existing method on a data set which obeys the existing method's model assumptions. When these assumptions are violated, Sparse Partitioning will generally offer superior performance.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sparse Partitioning: Nonlinear regression with binary or tertiary predictors, with application to association studies\",\"authors\":\"D. Speed, Simon Tavar'e\",\"doi\":\"10.1214/10-AOAS411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Sparse Partitioning, a Bayesian method for identifying predictors that either individually or in combination with others affect a response variable. The method is designed for regression problems involving binary or tertiary predictors and allows the number of predictors to exceed the size of the sample, two properties which make it well suited for association studies. Sparse Partitioning differs from other regression methods by placing no restrictions on how the predictors may influence the response. To compensate for this generality, Sparse Partitioning implements a novel way of exploring the model space. It searches for high posterior probability partitions of the predictor set, where each partition defines groups of predictors that jointly influence the response. The result is a robust method that requires no prior knowledge of the true predictor--response relationship. Testing on simulated data suggests Sparse Partitioning will typically match the performance of an existing method on a data set which obeys the existing method's model assumptions. When these assumptions are violated, Sparse Partitioning will generally offer superior performance.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-AOAS411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-AOAS411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了稀疏分区,一种贝叶斯方法,用于识别单独或与其他因素联合影响响应变量的预测因子。该方法是为涉及二元或三级预测因子的回归问题而设计的,并且允许预测因子的数量超过样本的大小,这两个特性使其非常适合关联研究。稀疏分区与其他回归方法的不同之处在于,它不限制预测因子如何影响响应。为了弥补这种通用性,稀疏分区实现了一种探索模型空间的新方法。它搜索预测集的高后验概率分区,其中每个分区定义共同影响响应的预测器组。结果是一个健壮的方法,不需要真正的预测-响应关系的先验知识。在模拟数据上的测试表明,稀疏分区通常会在遵循现有方法模型假设的数据集上匹配现有方法的性能。当这些假设被违反时,稀疏分区通常会提供更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Partitioning: Nonlinear regression with binary or tertiary predictors, with application to association studies
This paper presents Sparse Partitioning, a Bayesian method for identifying predictors that either individually or in combination with others affect a response variable. The method is designed for regression problems involving binary or tertiary predictors and allows the number of predictors to exceed the size of the sample, two properties which make it well suited for association studies. Sparse Partitioning differs from other regression methods by placing no restrictions on how the predictors may influence the response. To compensate for this generality, Sparse Partitioning implements a novel way of exploring the model space. It searches for high posterior probability partitions of the predictor set, where each partition defines groups of predictors that jointly influence the response. The result is a robust method that requires no prior knowledge of the true predictor--response relationship. Testing on simulated data suggests Sparse Partitioning will typically match the performance of an existing method on a data set which obeys the existing method's model assumptions. When these assumptions are violated, Sparse Partitioning will generally offer superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信