基于最优特征方程的四旋翼无人机二阶滑模控制器设计

U. Tilki, Ali Can Erüst
{"title":"基于最优特征方程的四旋翼无人机二阶滑模控制器设计","authors":"U. Tilki, Ali Can Erüst","doi":"10.22531/muglajsci.783506","DOIUrl":null,"url":null,"abstract":"Nowadays, small structured micro unmanned aerial vehicles (UAV’s) with four-rotor appears in military and civilian applications. As the usage of these vehicles becomes widespread, the development of controller structures which allow the UAV’s to follow a specified trajectory precisely is a new area of interest for researchers. In this work, nonlinear mathematical model of a four-rotor UAV is obtained. In order to obtain the mathematical model of UAV Newton-Euler equations are used. In the trajectory tracking system of this vehicle, second order sliding mode controller (SOSMC) is designed. Inside of the controller, control process is divided into two subsystems in order to provide position and attitude control. SOSMC is applied to the fully actuated and under actuated subsystems individually. In the next step, coefficients of the SOSMC is determined with optimum characteristic equation. Based on the reference study, boundaries of the predefined characteristic equation is obtained. Later, appropriate values are observed. In final part, simulation results are obtained, and the results are compared with the reference study. As a result, Optimum Characteristic equation results proved its robustness according to the smaller steady state error and more precise flight performance in trajectory. In this study simulation results are obtained using Simulink/MATLAB environment.","PeriodicalId":149663,"journal":{"name":"Mugla Journal of Science and Technology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR FOUR ROTOR UAV\",\"authors\":\"U. Tilki, Ali Can Erüst\",\"doi\":\"10.22531/muglajsci.783506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, small structured micro unmanned aerial vehicles (UAV’s) with four-rotor appears in military and civilian applications. As the usage of these vehicles becomes widespread, the development of controller structures which allow the UAV’s to follow a specified trajectory precisely is a new area of interest for researchers. In this work, nonlinear mathematical model of a four-rotor UAV is obtained. In order to obtain the mathematical model of UAV Newton-Euler equations are used. In the trajectory tracking system of this vehicle, second order sliding mode controller (SOSMC) is designed. Inside of the controller, control process is divided into two subsystems in order to provide position and attitude control. SOSMC is applied to the fully actuated and under actuated subsystems individually. In the next step, coefficients of the SOSMC is determined with optimum characteristic equation. Based on the reference study, boundaries of the predefined characteristic equation is obtained. Later, appropriate values are observed. In final part, simulation results are obtained, and the results are compared with the reference study. As a result, Optimum Characteristic equation results proved its robustness according to the smaller steady state error and more precise flight performance in trajectory. In this study simulation results are obtained using Simulink/MATLAB environment.\",\"PeriodicalId\":149663,\"journal\":{\"name\":\"Mugla Journal of Science and Technology\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mugla Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22531/muglajsci.783506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mugla Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22531/muglajsci.783506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,四旋翼小型结构微型无人机(UAV)已广泛应用于军事和民用领域。随着这些飞行器的广泛使用,允许无人机精确地遵循指定轨迹的控制器结构的发展是研究人员感兴趣的一个新领域。本文建立了四旋翼无人机的非线性数学模型。为了得到无人机的数学模型,采用了牛顿-欧拉方程。在该飞行器的轨迹跟踪系统中,设计了二阶滑模控制器(SOSMC)。在控制器内部,控制过程分为两个子系统,以提供位置和姿态控制。SOSMC分别应用于完全驱动和欠驱动子系统。下一步,利用最优特征方程确定SOSMC的系数。在文献研究的基础上,得到了预定义特征方程的边界。稍后,将观察到适当的值。最后给出了仿真结果,并与文献研究结果进行了比较。结果表明,最优特性方程具有更小的稳态误差和更精确的弹道飞行性能,具有较好的鲁棒性。本研究在Simulink/MATLAB环境下得到仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR FOUR ROTOR UAV
Nowadays, small structured micro unmanned aerial vehicles (UAV’s) with four-rotor appears in military and civilian applications. As the usage of these vehicles becomes widespread, the development of controller structures which allow the UAV’s to follow a specified trajectory precisely is a new area of interest for researchers. In this work, nonlinear mathematical model of a four-rotor UAV is obtained. In order to obtain the mathematical model of UAV Newton-Euler equations are used. In the trajectory tracking system of this vehicle, second order sliding mode controller (SOSMC) is designed. Inside of the controller, control process is divided into two subsystems in order to provide position and attitude control. SOSMC is applied to the fully actuated and under actuated subsystems individually. In the next step, coefficients of the SOSMC is determined with optimum characteristic equation. Based on the reference study, boundaries of the predefined characteristic equation is obtained. Later, appropriate values are observed. In final part, simulation results are obtained, and the results are compared with the reference study. As a result, Optimum Characteristic equation results proved its robustness according to the smaller steady state error and more precise flight performance in trajectory. In this study simulation results are obtained using Simulink/MATLAB environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信