{"title":"开发激光扫描应用于测绘和监测单株树木的特征,以满足城市林业的需要","authors":"Topi Tanhuanpää","doi":"10.14214/DF.230","DOIUrl":null,"url":null,"abstract":"Urban forests provide various ecosystem services. However, they also require fairly intensive management, which can be supported with up-to-date tree-level data. Until recently, the data have been collected using traditional field measurements. Laser scanning (LS) techniques provide efficient means for acquiring detailed three-dimensional (3D) data from the vegetation. The objective of this dissertation was to develop methods for mapping and monitoring urban forests at tree level. In substudy I, a method (MS-STI) utilizing multiple data sources was developed for extracting tree-level attributes. The method combined airborne laser scanning (ALS), field measurements, and tree locations. The field sample was generalized using the non-parametric nearest neighbor (NN) approach. The relative root mean square error (RMSE) of diameter at breast height (DBH) varied between 18.8–33.8%. The performance of MS-STI was assessed in substudy II by applying it to an existing tree register. 88.8% of the trees were successfully detected, and the relative RMSE of DBH for the most common diameter classes varied between 21.7–24.3%. In substudy III, downed trees were mapped from a recreational forest area by detecting changes in the canopy. 97.7% of the downed trees were detected and the commission error was 10%. Species group, DBH, and volume were estimated for all downed trees using ALS metrics and existing allometric models. For the DBH, the relative RMSE was 20.8% and 34.1% for conifers and deciduous trees respectively. Finally, in substudy IV, a method utilizing terrestrial laser scanning (TLS) and tree basic density was developed for estimating tree-level stem biomass for urban trees. The relative RMSE of the stem biomass estimates varied between 8.4–10.5%. The dissertation demonstrates the applicability of LS data in assessing tree-level attributes for urban forests. The methods developed show potential in providing the planning and management of urban forests with cost-efficient and up-to-date tree-level data.","PeriodicalId":375560,"journal":{"name":"Dissertationes Forestales","volume":"48 191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developing laser scanning applications for mapping and monitoring single tree characteristics for the needs of urban forestry\",\"authors\":\"Topi Tanhuanpää\",\"doi\":\"10.14214/DF.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban forests provide various ecosystem services. However, they also require fairly intensive management, which can be supported with up-to-date tree-level data. Until recently, the data have been collected using traditional field measurements. Laser scanning (LS) techniques provide efficient means for acquiring detailed three-dimensional (3D) data from the vegetation. The objective of this dissertation was to develop methods for mapping and monitoring urban forests at tree level. In substudy I, a method (MS-STI) utilizing multiple data sources was developed for extracting tree-level attributes. The method combined airborne laser scanning (ALS), field measurements, and tree locations. The field sample was generalized using the non-parametric nearest neighbor (NN) approach. The relative root mean square error (RMSE) of diameter at breast height (DBH) varied between 18.8–33.8%. The performance of MS-STI was assessed in substudy II by applying it to an existing tree register. 88.8% of the trees were successfully detected, and the relative RMSE of DBH for the most common diameter classes varied between 21.7–24.3%. In substudy III, downed trees were mapped from a recreational forest area by detecting changes in the canopy. 97.7% of the downed trees were detected and the commission error was 10%. Species group, DBH, and volume were estimated for all downed trees using ALS metrics and existing allometric models. For the DBH, the relative RMSE was 20.8% and 34.1% for conifers and deciduous trees respectively. Finally, in substudy IV, a method utilizing terrestrial laser scanning (TLS) and tree basic density was developed for estimating tree-level stem biomass for urban trees. The relative RMSE of the stem biomass estimates varied between 8.4–10.5%. The dissertation demonstrates the applicability of LS data in assessing tree-level attributes for urban forests. The methods developed show potential in providing the planning and management of urban forests with cost-efficient and up-to-date tree-level data.\",\"PeriodicalId\":375560,\"journal\":{\"name\":\"Dissertationes Forestales\",\"volume\":\"48 191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Forestales\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14214/DF.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Forestales","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14214/DF.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing laser scanning applications for mapping and monitoring single tree characteristics for the needs of urban forestry
Urban forests provide various ecosystem services. However, they also require fairly intensive management, which can be supported with up-to-date tree-level data. Until recently, the data have been collected using traditional field measurements. Laser scanning (LS) techniques provide efficient means for acquiring detailed three-dimensional (3D) data from the vegetation. The objective of this dissertation was to develop methods for mapping and monitoring urban forests at tree level. In substudy I, a method (MS-STI) utilizing multiple data sources was developed for extracting tree-level attributes. The method combined airborne laser scanning (ALS), field measurements, and tree locations. The field sample was generalized using the non-parametric nearest neighbor (NN) approach. The relative root mean square error (RMSE) of diameter at breast height (DBH) varied between 18.8–33.8%. The performance of MS-STI was assessed in substudy II by applying it to an existing tree register. 88.8% of the trees were successfully detected, and the relative RMSE of DBH for the most common diameter classes varied between 21.7–24.3%. In substudy III, downed trees were mapped from a recreational forest area by detecting changes in the canopy. 97.7% of the downed trees were detected and the commission error was 10%. Species group, DBH, and volume were estimated for all downed trees using ALS metrics and existing allometric models. For the DBH, the relative RMSE was 20.8% and 34.1% for conifers and deciduous trees respectively. Finally, in substudy IV, a method utilizing terrestrial laser scanning (TLS) and tree basic density was developed for estimating tree-level stem biomass for urban trees. The relative RMSE of the stem biomass estimates varied between 8.4–10.5%. The dissertation demonstrates the applicability of LS data in assessing tree-level attributes for urban forests. The methods developed show potential in providing the planning and management of urban forests with cost-efficient and up-to-date tree-level data.