构成格的1-均匀dcsl图的顶点标记的表征

K. A. Germina, K. Nageswararao
{"title":"构成格的1-均匀dcsl图的顶点标记的表征","authors":"K. A. Germina, K. Nageswararao","doi":"10.5899/2015/JFSVA-00224","DOIUrl":null,"url":null,"abstract":"A 1-uniform dcsl of a graph $G$ is an injective set-valued function $f : V(G)\\rightarrow 2^{X}, X$ be a non-empty ground set, such that the corresponding induced function $f^{\\oplus} :V(G) \\times V(G) \\rightarrow 2^{X}\\setminus \\{\\phi\\}$ satisfies $\\vert f^{\\oplus}(u, v)\\vert = 1.d(u, v)$ for all distinct $u, v \\in V(G)$, where $d(u, v)$ is the distance between $u$ and $v$. Let ${\\mathscr{F}}$ be a family of subsets of a set $X$. A {\\it tight path} between two distinct sets $P$ and $Q$ (or from $P$ to $Q$) in ${\\mathscr{F}}$ is a sequence $P_0 = P, P_1, P_2 \\dots P_n = Q$ in ${\\mathscr{F}}$ such that $d(P,Q)= \\mid P \\bigtriangleup Q \\mid = n$ and $d(P_i, P_{i+1}) = 1$ for $0 \\leq i\\leq n-1$. The family ${\\mathscr{F}}$ is {\\it well-graded} (or {\\it wg-family}), if there is a {\\it tight path} between any two of its distinct sets. Any family ${\\mathscr{F}}$ of subsets of $X$ defines a graph $G_{\\mathscr{F}} = ( {\\mathscr{F}} , E_{\\mathscr{F}})$, where $E_{\\mathscr{F}} = \\{ \\{P,Q \\} \\subseteq {\\mathscr{F}}:\\mid P \\bigtriangleup Q \\mid = 1 \\} $, and we call $G_{\\mathscr{F}$, an ${\\mathscr{F}}$-induced graph. In this paper, we study 1-uniform dcsl graphs whose vertex labelings whether or not forms a lattice and prove that the cover graph $C_{{\\mathscr{F}}}$ of a poset ${\\mathscr{F}}$ with respect to set inclusion ` $\\subseteq$' is isomorphic to the ${\\mathscr{F}}$-induced graph $G_{{\\mathscr{F}}}$.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterization of Vertex labeling of 1-uniform dcsl graph which form a lattice\",\"authors\":\"K. A. Germina, K. Nageswararao\",\"doi\":\"10.5899/2015/JFSVA-00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 1-uniform dcsl of a graph $G$ is an injective set-valued function $f : V(G)\\\\rightarrow 2^{X}, X$ be a non-empty ground set, such that the corresponding induced function $f^{\\\\oplus} :V(G) \\\\times V(G) \\\\rightarrow 2^{X}\\\\setminus \\\\{\\\\phi\\\\}$ satisfies $\\\\vert f^{\\\\oplus}(u, v)\\\\vert = 1.d(u, v)$ for all distinct $u, v \\\\in V(G)$, where $d(u, v)$ is the distance between $u$ and $v$. Let ${\\\\mathscr{F}}$ be a family of subsets of a set $X$. A {\\\\it tight path} between two distinct sets $P$ and $Q$ (or from $P$ to $Q$) in ${\\\\mathscr{F}}$ is a sequence $P_0 = P, P_1, P_2 \\\\dots P_n = Q$ in ${\\\\mathscr{F}}$ such that $d(P,Q)= \\\\mid P \\\\bigtriangleup Q \\\\mid = n$ and $d(P_i, P_{i+1}) = 1$ for $0 \\\\leq i\\\\leq n-1$. The family ${\\\\mathscr{F}}$ is {\\\\it well-graded} (or {\\\\it wg-family}), if there is a {\\\\it tight path} between any two of its distinct sets. Any family ${\\\\mathscr{F}}$ of subsets of $X$ defines a graph $G_{\\\\mathscr{F}} = ( {\\\\mathscr{F}} , E_{\\\\mathscr{F}})$, where $E_{\\\\mathscr{F}} = \\\\{ \\\\{P,Q \\\\} \\\\subseteq {\\\\mathscr{F}}:\\\\mid P \\\\bigtriangleup Q \\\\mid = 1 \\\\} $, and we call $G_{\\\\mathscr{F}$, an ${\\\\mathscr{F}}$-induced graph. In this paper, we study 1-uniform dcsl graphs whose vertex labelings whether or not forms a lattice and prove that the cover graph $C_{{\\\\mathscr{F}}}$ of a poset ${\\\\mathscr{F}}$ with respect to set inclusion ` $\\\\subseteq$' is isomorphic to the ${\\\\mathscr{F}}$-induced graph $G_{{\\\\mathscr{F}}}$.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2015/JFSVA-00224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2015/JFSVA-00224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图$G$的1-一致dcsl是一个内射集值函数$f : V(G)\rightarrow 2^{X}, X$是一个非空的接地集,使得对应的诱导函数$f^{\oplus} :V(G) \times V(G) \rightarrow 2^{X}\setminus \{\phi\}$对所有不同的$u, v \in V(G)$满足$\vert f^{\oplus}(u, v)\vert = 1.d(u, v)$,其中$d(u, v)$为$u$和$v$之间的距离。设${\mathscr{F}}$是集合$X$的子集族。{\it}${\mathscr{F}}$中的$P$和$Q$(或从$P$到$Q$)之间的是${\mathscr{F}}$中的$P_0 = P, P_1, P_2 \dots P_n = Q$序列,使得$0 \leq i\leq n-1$的$d(P,Q)= \mid P \bigtriangleup Q \mid = n$和$d(P_i, P_{i+1}) = 1$。如果在任意两个不同的集合之间存在家族${\mathscr{F}}$是{\it分级良好}的(或wg家族{\it)。}{\it}$X$的任何子集族${\mathscr{F}}$都定义了一个图$G_{\mathscr{F}} = ( {\mathscr{F}} , E_{\mathscr{F}})$,其中$E_{\mathscr{F}} = \{ \{P,Q \} \subseteq {\mathscr{F}}:\mid P \bigtriangleup Q \mid = 1 \} $,我们称之为$G_{\mathscr{F}$,是一个${\mathscr{F}}$诱导图。本文研究了顶点标记是否构成格的1-一致dcsl图,并证明了集包含' $\subseteq$ '的偏序集${\mathscr{F}}$的盖图$C_{{\mathscr{F}}}$与${\mathscr{F}}$诱导图$G_{{\mathscr{F}}}$同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Vertex labeling of 1-uniform dcsl graph which form a lattice
A 1-uniform dcsl of a graph $G$ is an injective set-valued function $f : V(G)\rightarrow 2^{X}, X$ be a non-empty ground set, such that the corresponding induced function $f^{\oplus} :V(G) \times V(G) \rightarrow 2^{X}\setminus \{\phi\}$ satisfies $\vert f^{\oplus}(u, v)\vert = 1.d(u, v)$ for all distinct $u, v \in V(G)$, where $d(u, v)$ is the distance between $u$ and $v$. Let ${\mathscr{F}}$ be a family of subsets of a set $X$. A {\it tight path} between two distinct sets $P$ and $Q$ (or from $P$ to $Q$) in ${\mathscr{F}}$ is a sequence $P_0 = P, P_1, P_2 \dots P_n = Q$ in ${\mathscr{F}}$ such that $d(P,Q)= \mid P \bigtriangleup Q \mid = n$ and $d(P_i, P_{i+1}) = 1$ for $0 \leq i\leq n-1$. The family ${\mathscr{F}}$ is {\it well-graded} (or {\it wg-family}), if there is a {\it tight path} between any two of its distinct sets. Any family ${\mathscr{F}}$ of subsets of $X$ defines a graph $G_{\mathscr{F}} = ( {\mathscr{F}} , E_{\mathscr{F}})$, where $E_{\mathscr{F}} = \{ \{P,Q \} \subseteq {\mathscr{F}}:\mid P \bigtriangleup Q \mid = 1 \} $, and we call $G_{\mathscr{F}$, an ${\mathscr{F}}$-induced graph. In this paper, we study 1-uniform dcsl graphs whose vertex labelings whether or not forms a lattice and prove that the cover graph $C_{{\mathscr{F}}}$ of a poset ${\mathscr{F}}$ with respect to set inclusion ` $\subseteq$' is isomorphic to the ${\mathscr{F}}$-induced graph $G_{{\mathscr{F}}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信