基于图神经网络的ECO泄漏功率快速优化

Kai Wang, Peng Cao
{"title":"基于图神经网络的ECO泄漏功率快速优化","authors":"Kai Wang, Peng Cao","doi":"10.1109/ASP-DAC52403.2022.9712486","DOIUrl":null,"url":null,"abstract":"In modern design, engineering change order (ECO) is often utilized to perform power optimization including gate-sizing and Vth-assignments, which is efficient but highly timing consuming. Many graph neural network (GNN) based methods are recently proposed for fast and accurate ECO power optimization by considering neighbors' information. Nonetheless, these works fail to learn high-quality node representations on directed graph since they treat all neighbors uniformly when gathering their information and lack local topology information from neighbors one or two-hop away. In this paper, we introduce a directed GNN based method which learns information from different neighbors respectively and contains rich local topology information, which was validated by the Opencores and IWLS 2005 benchmarks with TSMC 28nm technology. Experimental results show that our approach outperforms prior GNN based methods with at least 7.8% and 7.6% prediction accuracy improvement for seen and unseen designs respectively as well as 8.3% to 29.0% leakage optimization improvement. Compared with commercial EDA tool PrimeTime, the proposed framework achieves similar power optimization results with up to 12X runtime improvement.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Graph Neural Network Method for Fast ECO Leakage Power Optimization\",\"authors\":\"Kai Wang, Peng Cao\",\"doi\":\"10.1109/ASP-DAC52403.2022.9712486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern design, engineering change order (ECO) is often utilized to perform power optimization including gate-sizing and Vth-assignments, which is efficient but highly timing consuming. Many graph neural network (GNN) based methods are recently proposed for fast and accurate ECO power optimization by considering neighbors' information. Nonetheless, these works fail to learn high-quality node representations on directed graph since they treat all neighbors uniformly when gathering their information and lack local topology information from neighbors one or two-hop away. In this paper, we introduce a directed GNN based method which learns information from different neighbors respectively and contains rich local topology information, which was validated by the Opencores and IWLS 2005 benchmarks with TSMC 28nm technology. Experimental results show that our approach outperforms prior GNN based methods with at least 7.8% and 7.6% prediction accuracy improvement for seen and unseen designs respectively as well as 8.3% to 29.0% leakage optimization improvement. Compared with commercial EDA tool PrimeTime, the proposed framework achieves similar power optimization results with up to 12X runtime improvement.\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC52403.2022.9712486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在现代设计中,经常使用工程变更顺序(ECO)来进行功率优化,包括栅极尺寸和电压分配,这种方法效率高,但耗时长。近年来,人们提出了许多基于图神经网络(GNN)的方法来考虑邻居信息,实现快速、准确的ECO功率优化。然而,这些作品在收集节点信息时统一对待所有的邻居,缺乏一跳或两跳之外的邻居的局部拓扑信息,无法在有向图上学习到高质量的节点表示。本文介绍了一种基于定向GNN的方法,该方法分别从不同邻居处学习信息,包含丰富的局部拓扑信息,并通过Opencores和IWLS 2005基准测试验证了该方法的有效性。实验结果表明,我们的方法优于先前基于GNN的方法,对可见设计和未见设计的预测精度分别提高了至少7.8%和7.6%,泄漏优化提高了8.3%至29.0%。与商用EDA工具PrimeTime相比,该框架实现了类似的功耗优化结果,运行时间提高了12倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph Neural Network Method for Fast ECO Leakage Power Optimization
In modern design, engineering change order (ECO) is often utilized to perform power optimization including gate-sizing and Vth-assignments, which is efficient but highly timing consuming. Many graph neural network (GNN) based methods are recently proposed for fast and accurate ECO power optimization by considering neighbors' information. Nonetheless, these works fail to learn high-quality node representations on directed graph since they treat all neighbors uniformly when gathering their information and lack local topology information from neighbors one or two-hop away. In this paper, we introduce a directed GNN based method which learns information from different neighbors respectively and contains rich local topology information, which was validated by the Opencores and IWLS 2005 benchmarks with TSMC 28nm technology. Experimental results show that our approach outperforms prior GNN based methods with at least 7.8% and 7.6% prediction accuracy improvement for seen and unseen designs respectively as well as 8.3% to 29.0% leakage optimization improvement. Compared with commercial EDA tool PrimeTime, the proposed framework achieves similar power optimization results with up to 12X runtime improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信