{"title":"基于HARQ-IR的6G CF M-MIMO无线网络统计延迟和错误率有界QoS提供的ε-有效容量","authors":"Xi Zhang, Jingqing Wang, H. Poor","doi":"10.1109/CISS56502.2023.10089782","DOIUrl":null,"url":null,"abstract":"Significant effort has been devoted to the problem of guaranteeing stringent ultra-reliable and low-latency communications (URLLC) while introducing new requirements for better quality-of-services (QoS) over next generation wireless networks. One of the major design issues raised by URLLC is how to support explosively growing demands for delay-sensitive multimedia applications while guaranteeing ultra-reliability. Towards this end, there have been a wide spectrum of promising techniques, including statistical delay and error rate-bounded QoS provisioning, cell-free (CF) massive multiple-input-multiple-output (m-MIMO), finite blocklength coding (FBC), hybrid automatic repeat request with incremental redundancy (HARQ-IR) protocol, etc. However, when being integrated with FBC, how to rigorously and efficiently characterize the dynamics of mobile wireless networks in terms of statistical delay and error-rate bounded QoS provisioning for CF m-MIMO has imposed many new challenges not encountered before. To overcome these challenges, in this paper we develop statistical delay and error-rate bounded QoS analytical modeling schemes to characterize the FBC-based $\\epsilon$-effective capacity over 6G CF m-MIMO wireless networks using HARQ-IR. In particular, first we establish CF m-MIMO based system architecture models. Second, we apply a HARQ-IR protocol for deriving the channel coding rate, outage probability, and FBC based $\\epsilon$-effective capacity function using the Mellin transform. Finally, we conduct a set of simulations to validate and evaluate our proposed schemes.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ε-Effective Capacity for Statistical Delay and Error-Rate Bounded QoS Provisioning Over 6G CF M-MIMO Wireless Networks Using HARQ-IR\",\"authors\":\"Xi Zhang, Jingqing Wang, H. Poor\",\"doi\":\"10.1109/CISS56502.2023.10089782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant effort has been devoted to the problem of guaranteeing stringent ultra-reliable and low-latency communications (URLLC) while introducing new requirements for better quality-of-services (QoS) over next generation wireless networks. One of the major design issues raised by URLLC is how to support explosively growing demands for delay-sensitive multimedia applications while guaranteeing ultra-reliability. Towards this end, there have been a wide spectrum of promising techniques, including statistical delay and error rate-bounded QoS provisioning, cell-free (CF) massive multiple-input-multiple-output (m-MIMO), finite blocklength coding (FBC), hybrid automatic repeat request with incremental redundancy (HARQ-IR) protocol, etc. However, when being integrated with FBC, how to rigorously and efficiently characterize the dynamics of mobile wireless networks in terms of statistical delay and error-rate bounded QoS provisioning for CF m-MIMO has imposed many new challenges not encountered before. To overcome these challenges, in this paper we develop statistical delay and error-rate bounded QoS analytical modeling schemes to characterize the FBC-based $\\\\epsilon$-effective capacity over 6G CF m-MIMO wireless networks using HARQ-IR. In particular, first we establish CF m-MIMO based system architecture models. Second, we apply a HARQ-IR protocol for deriving the channel coding rate, outage probability, and FBC based $\\\\epsilon$-effective capacity function using the Mellin transform. Finally, we conduct a set of simulations to validate and evaluate our proposed schemes.\",\"PeriodicalId\":243775,\"journal\":{\"name\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS56502.2023.10089782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ε-Effective Capacity for Statistical Delay and Error-Rate Bounded QoS Provisioning Over 6G CF M-MIMO Wireless Networks Using HARQ-IR
Significant effort has been devoted to the problem of guaranteeing stringent ultra-reliable and low-latency communications (URLLC) while introducing new requirements for better quality-of-services (QoS) over next generation wireless networks. One of the major design issues raised by URLLC is how to support explosively growing demands for delay-sensitive multimedia applications while guaranteeing ultra-reliability. Towards this end, there have been a wide spectrum of promising techniques, including statistical delay and error rate-bounded QoS provisioning, cell-free (CF) massive multiple-input-multiple-output (m-MIMO), finite blocklength coding (FBC), hybrid automatic repeat request with incremental redundancy (HARQ-IR) protocol, etc. However, when being integrated with FBC, how to rigorously and efficiently characterize the dynamics of mobile wireless networks in terms of statistical delay and error-rate bounded QoS provisioning for CF m-MIMO has imposed many new challenges not encountered before. To overcome these challenges, in this paper we develop statistical delay and error-rate bounded QoS analytical modeling schemes to characterize the FBC-based $\epsilon$-effective capacity over 6G CF m-MIMO wireless networks using HARQ-IR. In particular, first we establish CF m-MIMO based system architecture models. Second, we apply a HARQ-IR protocol for deriving the channel coding rate, outage probability, and FBC based $\epsilon$-effective capacity function using the Mellin transform. Finally, we conduct a set of simulations to validate and evaluate our proposed schemes.