基于混合进化算法的反射天线优化

F. Grimaccia, M. Mussetta, P. Pirinoli, R. Zich
{"title":"基于混合进化算法的反射天线优化","authors":"F. Grimaccia, M. Mussetta, P. Pirinoli, R. Zich","doi":"10.1109/EMCZUR.2006.214918","DOIUrl":null,"url":null,"abstract":"In this paper a new effective optimization algorithm called genetical swarm optimization (GSO) will be presented. It has been developed in order to combine in the most effective way the properties of two of the most popular evolutionary optimization approaches now in use for the optimization of electromagnetic structures, the particle swarm optimization (PSO) and genetic algorithms (GA). This algorithm is essentially a population-based heuristic search technique, which can be used to solve combinatorial optimization problems, modeled on the concepts of natural selection and evolution (GA) but also based on cultural and social rules derived from the analysis of the swarm intelligence and from the interaction among particles (PSO). The algorithm is tested here with respect to the other optimization techniques dealing with the optimal design of an elliptical reflectarray antenna with printed elements and an off-set feed","PeriodicalId":130489,"journal":{"name":"2006 17th International Zurich Symposium on Electromagnetic Compatibility","volume":"64 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimization of a reflectarray antenna via hybrid evolutionary algorithms\",\"authors\":\"F. Grimaccia, M. Mussetta, P. Pirinoli, R. Zich\",\"doi\":\"10.1109/EMCZUR.2006.214918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new effective optimization algorithm called genetical swarm optimization (GSO) will be presented. It has been developed in order to combine in the most effective way the properties of two of the most popular evolutionary optimization approaches now in use for the optimization of electromagnetic structures, the particle swarm optimization (PSO) and genetic algorithms (GA). This algorithm is essentially a population-based heuristic search technique, which can be used to solve combinatorial optimization problems, modeled on the concepts of natural selection and evolution (GA) but also based on cultural and social rules derived from the analysis of the swarm intelligence and from the interaction among particles (PSO). The algorithm is tested here with respect to the other optimization techniques dealing with the optimal design of an elliptical reflectarray antenna with printed elements and an off-set feed\",\"PeriodicalId\":130489,\"journal\":{\"name\":\"2006 17th International Zurich Symposium on Electromagnetic Compatibility\",\"volume\":\"64 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 17th International Zurich Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCZUR.2006.214918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 17th International Zurich Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCZUR.2006.214918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的有效的优化算法——遗传群优化算法。它的发展是为了以最有效的方式结合目前用于电磁结构优化的两种最流行的进化优化方法的特性,粒子群优化(PSO)和遗传算法(GA)。该算法本质上是一种基于群体的启发式搜索技术,可用于解决组合优化问题,该算法以自然选择和进化(GA)的概念为模型,也基于从群体智能分析和粒子间相互作用(PSO)中得出的文化和社会规则。本文将该算法与其他优化技术进行了比较,以解决带有印刷元件和偏移馈电的椭圆反射天线的优化设计问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of a reflectarray antenna via hybrid evolutionary algorithms
In this paper a new effective optimization algorithm called genetical swarm optimization (GSO) will be presented. It has been developed in order to combine in the most effective way the properties of two of the most popular evolutionary optimization approaches now in use for the optimization of electromagnetic structures, the particle swarm optimization (PSO) and genetic algorithms (GA). This algorithm is essentially a population-based heuristic search technique, which can be used to solve combinatorial optimization problems, modeled on the concepts of natural selection and evolution (GA) but also based on cultural and social rules derived from the analysis of the swarm intelligence and from the interaction among particles (PSO). The algorithm is tested here with respect to the other optimization techniques dealing with the optimal design of an elliptical reflectarray antenna with printed elements and an off-set feed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信