一种新的动态进程识别核方法

O. Taouali
{"title":"一种新的动态进程识别核方法","authors":"O. Taouali","doi":"10.1109/STA50679.2020.9329304","DOIUrl":null,"url":null,"abstract":"This paper proposes a new kernel method for dynamic process modelling. The developed algorithm is titled Adaptive Reduced Kernel Partial Least Squares (ARKPLS). The developed ARKPLS uses the Reduced KPLS technique in an offline scenario in order to build a model which have a small parameter number after that, the number of the retained parameters are update in an online scenario. The suggested technique has been used to identify a nonlinear process.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Kernel method for Dynamic Process Identification\",\"authors\":\"O. Taouali\",\"doi\":\"10.1109/STA50679.2020.9329304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new kernel method for dynamic process modelling. The developed algorithm is titled Adaptive Reduced Kernel Partial Least Squares (ARKPLS). The developed ARKPLS uses the Reduced KPLS technique in an offline scenario in order to build a model which have a small parameter number after that, the number of the retained parameters are update in an online scenario. The suggested technique has been used to identify a nonlinear process.\",\"PeriodicalId\":158545,\"journal\":{\"name\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"2021 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA50679.2020.9329304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的动态过程建模核方法。所开发的算法被称为自适应简化核偏最小二乘(ARKPLS)。开发的ARKPLS在离线场景中使用了reduce KPLS技术,以建立一个参数数量较少的模型,然后在在线场景中更新保留的参数数量。所建议的技术已用于识别一个非线性过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Kernel method for Dynamic Process Identification
This paper proposes a new kernel method for dynamic process modelling. The developed algorithm is titled Adaptive Reduced Kernel Partial Least Squares (ARKPLS). The developed ARKPLS uses the Reduced KPLS technique in an offline scenario in order to build a model which have a small parameter number after that, the number of the retained parameters are update in an online scenario. The suggested technique has been used to identify a nonlinear process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信