视频序列近红外人脸图像质量评价系统

Jianfeng Long, Shutao Li
{"title":"视频序列近红外人脸图像质量评价系统","authors":"Jianfeng Long, Shutao Li","doi":"10.1109/ICIG.2011.45","DOIUrl":null,"url":null,"abstract":"In near infrared face recognition systems, situations including head rotation, motion blur, darkness, eyes closed, mouth opened and the small face region will deteriorate the recognition accuracy. Thus, it is necessary to design a quality assessment system to select the best frame from the input video sequence before face recognition or saving it to database. In this paper we present a scoring evaluation system based on five features including sharpness, brightness, resolution, head pose and expression. Firstly, the score of each feature is computed independently, and then the final quality score is obtained by combining the scores of five features with weights. Center for Biometrics and Security Research (CBSR) Near Infrared Face Dataset is used to test the system. The experiment results demonstrate the effectiveness of the proposed quality assessment.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Near Infrared Face Image Quality Assessment System of Video Sequences\",\"authors\":\"Jianfeng Long, Shutao Li\",\"doi\":\"10.1109/ICIG.2011.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In near infrared face recognition systems, situations including head rotation, motion blur, darkness, eyes closed, mouth opened and the small face region will deteriorate the recognition accuracy. Thus, it is necessary to design a quality assessment system to select the best frame from the input video sequence before face recognition or saving it to database. In this paper we present a scoring evaluation system based on five features including sharpness, brightness, resolution, head pose and expression. Firstly, the score of each feature is computed independently, and then the final quality score is obtained by combining the scores of five features with weights. Center for Biometrics and Security Research (CBSR) Near Infrared Face Dataset is used to test the system. The experiment results demonstrate the effectiveness of the proposed quality assessment.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在近红外人脸识别系统中,头部旋转、运动模糊、黑暗、闭眼、张口、面部区域小等情况会降低识别精度。因此,有必要设计一个质量评估系统,在人脸识别之前从输入的视频序列中选择最佳帧或将其保存到数据库中。本文提出了一种基于清晰度、亮度、分辨率、头部姿态和表情五个特征的评分评价系统。首先独立计算每个特征的得分,然后将五个特征的得分与权重结合得到最终的质量得分。使用生物识别与安全研究中心(CBSR)近红外人脸数据集对系统进行测试。实验结果证明了所提出的质量评价方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near Infrared Face Image Quality Assessment System of Video Sequences
In near infrared face recognition systems, situations including head rotation, motion blur, darkness, eyes closed, mouth opened and the small face region will deteriorate the recognition accuracy. Thus, it is necessary to design a quality assessment system to select the best frame from the input video sequence before face recognition or saving it to database. In this paper we present a scoring evaluation system based on five features including sharpness, brightness, resolution, head pose and expression. Firstly, the score of each feature is computed independently, and then the final quality score is obtained by combining the scores of five features with weights. Center for Biometrics and Security Research (CBSR) Near Infrared Face Dataset is used to test the system. The experiment results demonstrate the effectiveness of the proposed quality assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信