膨胀分形网络的动力学

A. V. Teixeira, P. Licínio
{"title":"膨胀分形网络的动力学","authors":"A. V. Teixeira, P. Licínio","doi":"10.1209/epl/i1999-00141-0","DOIUrl":null,"url":null,"abstract":"The dynamics of swollen fractal networks (Rouse model) has been studied through computer simulations. The fluctuation-relaxation theorem was used instead of the usual Langevin approach to Brownian dynamics. We measured the equivalent of the mean square displacement ⟨r 2⟩ and the coefficient of self-diffusion D of two- and three-dimensional Sierpinski networks and of the two-dimensional percolation network. The results showed an anomalous diffusion, i.e., a power law for D, decreasing with time with an exponent proportional to the spectral dimension of the network.","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamics of swollen fractal networks\",\"authors\":\"A. V. Teixeira, P. Licínio\",\"doi\":\"10.1209/epl/i1999-00141-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of swollen fractal networks (Rouse model) has been studied through computer simulations. The fluctuation-relaxation theorem was used instead of the usual Langevin approach to Brownian dynamics. We measured the equivalent of the mean square displacement ⟨r 2⟩ and the coefficient of self-diffusion D of two- and three-dimensional Sierpinski networks and of the two-dimensional percolation network. The results showed an anomalous diffusion, i.e., a power law for D, decreasing with time with an exponent proportional to the spectral dimension of the network.\",\"PeriodicalId\":171520,\"journal\":{\"name\":\"EPL (Europhysics Letters)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL (Europhysics Letters)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/epl/i1999-00141-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/epl/i1999-00141-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过计算机模拟研究了膨胀分形网络(劳斯模型)的动力学。用涨落松弛定理代替通常的朗之万方法来研究布朗动力学。我们测量了二维和三维Sierpinski网络和二维渗透网络的均方位移⟨r 2⟩的当量和自扩散系数D。结果显示了一个反常的扩散,即D的幂律,随着时间的推移,与网络的谱维成正比的指数递减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of swollen fractal networks
The dynamics of swollen fractal networks (Rouse model) has been studied through computer simulations. The fluctuation-relaxation theorem was used instead of the usual Langevin approach to Brownian dynamics. We measured the equivalent of the mean square displacement ⟨r 2⟩ and the coefficient of self-diffusion D of two- and three-dimensional Sierpinski networks and of the two-dimensional percolation network. The results showed an anomalous diffusion, i.e., a power law for D, decreasing with time with an exponent proportional to the spectral dimension of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信