利用自动微分和高指数DAE求解自然坐标下的多体动力学

J. Pryce, N. Nedialkov
{"title":"利用自动微分和高指数DAE求解自然坐标下的多体动力学","authors":"J. Pryce, N. Nedialkov","doi":"10.14232/ACTACYB.24.3.2020.4","DOIUrl":null,"url":null,"abstract":"The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multi-body systems is valued for giving simple, sparse models. We describe our version of it (NPNCs) and compare with the classical ap- proach of Jalon and Bayo (JBNCs). NPNCs use the high-index differential- algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. NPNCs give significantly smaller equation systems than JBNCs, at the cost of a non- constant mass matrix for fully 3D models—a minor downside in the DAETS context. A 2D and a 3D example are presented, with numerical results.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Another Multibody Dynamics in Natural Coordinates through Automatic Differentiation and High-Index DAE Solving\",\"authors\":\"J. Pryce, N. Nedialkov\",\"doi\":\"10.14232/ACTACYB.24.3.2020.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multi-body systems is valued for giving simple, sparse models. We describe our version of it (NPNCs) and compare with the classical ap- proach of Jalon and Bayo (JBNCs). NPNCs use the high-index differential- algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. NPNCs give significantly smaller equation systems than JBNCs, at the cost of a non- constant mass matrix for fully 3D models—a minor downside in the DAETS context. A 2D and a 3D example are presented, with numerical results.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/ACTACYB.24.3.2020.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.24.3.2020.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自然坐标法(NCs)用于拉格朗日多体系统的建模和仿真,具有简单、稀疏的优点。我们描述了我们的版本(npnc),并与经典的Jalon和Bayo方法(jbnc)进行了比较。npnc使用高指标微分代数方程求解器DAETS。算法微分,而不是符号代数,从拉格朗日方程形成运动方程。npnc给出的方程系统比jbnc要小得多,代价是完全3D模型的非恒定质量矩阵——这是DAETS环境中的一个小缺点。给出了二维和三维的算例,并给出了数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another Multibody Dynamics in Natural Coordinates through Automatic Differentiation and High-Index DAE Solving
The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multi-body systems is valued for giving simple, sparse models. We describe our version of it (NPNCs) and compare with the classical ap- proach of Jalon and Bayo (JBNCs). NPNCs use the high-index differential- algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. NPNCs give significantly smaller equation systems than JBNCs, at the cost of a non- constant mass matrix for fully 3D models—a minor downside in the DAETS context. A 2D and a 3D example are presented, with numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信