{"title":"利用自动微分和高指数DAE求解自然坐标下的多体动力学","authors":"J. Pryce, N. Nedialkov","doi":"10.14232/ACTACYB.24.3.2020.4","DOIUrl":null,"url":null,"abstract":"The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multi-body systems is valued for giving simple, sparse models. We describe our version of it (NPNCs) and compare with the classical ap- proach of Jalon and Bayo (JBNCs). NPNCs use the high-index differential- algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. NPNCs give significantly smaller equation systems than JBNCs, at the cost of a non- constant mass matrix for fully 3D models—a minor downside in the DAETS context. A 2D and a 3D example are presented, with numerical results.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Another Multibody Dynamics in Natural Coordinates through Automatic Differentiation and High-Index DAE Solving\",\"authors\":\"J. Pryce, N. Nedialkov\",\"doi\":\"10.14232/ACTACYB.24.3.2020.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multi-body systems is valued for giving simple, sparse models. We describe our version of it (NPNCs) and compare with the classical ap- proach of Jalon and Bayo (JBNCs). NPNCs use the high-index differential- algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. NPNCs give significantly smaller equation systems than JBNCs, at the cost of a non- constant mass matrix for fully 3D models—a minor downside in the DAETS context. A 2D and a 3D example are presented, with numerical results.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/ACTACYB.24.3.2020.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.24.3.2020.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Another Multibody Dynamics in Natural Coordinates through Automatic Differentiation and High-Index DAE Solving
The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multi-body systems is valued for giving simple, sparse models. We describe our version of it (NPNCs) and compare with the classical ap- proach of Jalon and Bayo (JBNCs). NPNCs use the high-index differential- algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. NPNCs give significantly smaller equation systems than JBNCs, at the cost of a non- constant mass matrix for fully 3D models—a minor downside in the DAETS context. A 2D and a 3D example are presented, with numerical results.