{"title":"高效零知识动态通用累加器及其在零知识初等数据库中的应用","authors":"H. Dang, T. V. Phuong, Thuc Nguyen, Thang Hoang","doi":"10.1109/TPS-ISA56441.2022.00038","DOIUrl":null,"url":null,"abstract":"Zero-knowledge universal accumulator generates the succinct commitment to a set and produces the short (non) membership proof (universal) without leaking information about the set (zero-knowledge). In order to further support a generic set and zero-knowledge, existing techniques generally combine the zero-knowledge universal accumulator with other protocols, such as digital signatures and hashes to primes, which incur high overhead and may not be suitable for real-world use. It is desirable to commit a set of membership concealing the information with the optimal complexity. We devise ZAC, a new zero-knowledge Dynamic Universal Accumulator by taking the existing cryptographic primitives into account to produce a new efficient accumulator. Our underlying building blocks are Bloom Filter and vector commitment scheme in [19], utilizing the binary expression and aggregation to achieve efficiency, generic set support, zero-knowledge and universal properties. As a result, our scheme is improved in terms of proof size and proof time, also comparable to the RSA-based set accumulator in [8] in the verifying complexity. With 128 bit security, our proof size is 48 bytes while theirs is 1310 bytes and the running time of elliptic curve-based methods is faster than RSA-based counterpart. ZAC is proved to be complete, ϵ-sound and zero-knowledge. Extensively, based on ZAC as building block, we construct a new Zero-Knowledge Elementary Database (ZKEDB), which consumes 5 times less storage space, $\\mathcal{O}\\left( {\\log N} \\right)$ less bandwidth, and $\\mathcal{O}\\left( {\\log N} \\right)$ more efficient in proving and verification than the state-of-art work in [13] (where N is the domain space size). ZKEDB is proved to be complete, ϵ-sound and zero-knowledge. ZKEDB supports a new type of select top ℓ query, and can be extended to non-elementary databases.","PeriodicalId":427887,"journal":{"name":"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)","volume":"63 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZAC: Efficient Zero-Knowledge Dynamic Universal Accumulator and Application to Zero-Knowledge Elementary Database\",\"authors\":\"H. Dang, T. V. Phuong, Thuc Nguyen, Thang Hoang\",\"doi\":\"10.1109/TPS-ISA56441.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-knowledge universal accumulator generates the succinct commitment to a set and produces the short (non) membership proof (universal) without leaking information about the set (zero-knowledge). In order to further support a generic set and zero-knowledge, existing techniques generally combine the zero-knowledge universal accumulator with other protocols, such as digital signatures and hashes to primes, which incur high overhead and may not be suitable for real-world use. It is desirable to commit a set of membership concealing the information with the optimal complexity. We devise ZAC, a new zero-knowledge Dynamic Universal Accumulator by taking the existing cryptographic primitives into account to produce a new efficient accumulator. Our underlying building blocks are Bloom Filter and vector commitment scheme in [19], utilizing the binary expression and aggregation to achieve efficiency, generic set support, zero-knowledge and universal properties. As a result, our scheme is improved in terms of proof size and proof time, also comparable to the RSA-based set accumulator in [8] in the verifying complexity. With 128 bit security, our proof size is 48 bytes while theirs is 1310 bytes and the running time of elliptic curve-based methods is faster than RSA-based counterpart. ZAC is proved to be complete, ϵ-sound and zero-knowledge. Extensively, based on ZAC as building block, we construct a new Zero-Knowledge Elementary Database (ZKEDB), which consumes 5 times less storage space, $\\\\mathcal{O}\\\\left( {\\\\log N} \\\\right)$ less bandwidth, and $\\\\mathcal{O}\\\\left( {\\\\log N} \\\\right)$ more efficient in proving and verification than the state-of-art work in [13] (where N is the domain space size). ZKEDB is proved to be complete, ϵ-sound and zero-knowledge. ZKEDB supports a new type of select top ℓ query, and can be extended to non-elementary databases.\",\"PeriodicalId\":427887,\"journal\":{\"name\":\"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)\",\"volume\":\"63 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPS-ISA56441.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPS-ISA56441.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ZAC: Efficient Zero-Knowledge Dynamic Universal Accumulator and Application to Zero-Knowledge Elementary Database
Zero-knowledge universal accumulator generates the succinct commitment to a set and produces the short (non) membership proof (universal) without leaking information about the set (zero-knowledge). In order to further support a generic set and zero-knowledge, existing techniques generally combine the zero-knowledge universal accumulator with other protocols, such as digital signatures and hashes to primes, which incur high overhead and may not be suitable for real-world use. It is desirable to commit a set of membership concealing the information with the optimal complexity. We devise ZAC, a new zero-knowledge Dynamic Universal Accumulator by taking the existing cryptographic primitives into account to produce a new efficient accumulator. Our underlying building blocks are Bloom Filter and vector commitment scheme in [19], utilizing the binary expression and aggregation to achieve efficiency, generic set support, zero-knowledge and universal properties. As a result, our scheme is improved in terms of proof size and proof time, also comparable to the RSA-based set accumulator in [8] in the verifying complexity. With 128 bit security, our proof size is 48 bytes while theirs is 1310 bytes and the running time of elliptic curve-based methods is faster than RSA-based counterpart. ZAC is proved to be complete, ϵ-sound and zero-knowledge. Extensively, based on ZAC as building block, we construct a new Zero-Knowledge Elementary Database (ZKEDB), which consumes 5 times less storage space, $\mathcal{O}\left( {\log N} \right)$ less bandwidth, and $\mathcal{O}\left( {\log N} \right)$ more efficient in proving and verification than the state-of-art work in [13] (where N is the domain space size). ZKEDB is proved to be complete, ϵ-sound and zero-knowledge. ZKEDB supports a new type of select top ℓ query, and can be extended to non-elementary databases.