{"title":"并行调度队列:基于队列的编程抽象,用于并行化细粒度通信协议","authors":"B. Falsafi, D. Wood","doi":"10.1109/HPCA.1999.744362","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel queue-based programming abstraction, Parallel Dispatch Queue (PDQ), that enables efficient parallel execution of fine-grain software communication protocols. Parallel systems often use fine-grain software handlers to integrate a network message into computation. Executing such handlers in parallel requires access synchronization around resources. Much as a monitor construct in a concurrent language protects accesses to a set of data structures, PDQ allows messages to include a synchronization key protecting handler accesses to a group of protocol resources. By simply synchronizing messages in a queue prior to dispatch, PDQ not only eliminates the overhead of acquiring/releasing synchronization primitives but also prevents busy-waiting within handlers. In this paper, we study PDQ's impact on software protocol performance in the context of fine-grain distributed shared memory (DSM) on an SMP cluster. Simulation results running shared-memory applications indicate that: (i) parallel software protocol execution using PDQ significantly improves performance in fine-grain DSM, (ii) tight integration of PDQ and embedded processors into a single custom device can offer performance competitive or better than an all-hardware DSM, and (iii) PDQ best benefits cost-effective systems that use idle SMP processors (rather than custom embedded processors) to execute protocols. On a cluster of 4 16-way SMPs, a PDQ-based parallel protocol running on idle SMP processors improves application performance by a factor of 2.6 over a system running a serial protocol on a single dedicated processor.","PeriodicalId":287867,"journal":{"name":"Proceedings Fifth International Symposium on High-Performance Computer Architecture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Parallel Dispatch Queue: a queue-based programming abstraction to parallelize fine-grain communication protocols\",\"authors\":\"B. Falsafi, D. Wood\",\"doi\":\"10.1109/HPCA.1999.744362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel queue-based programming abstraction, Parallel Dispatch Queue (PDQ), that enables efficient parallel execution of fine-grain software communication protocols. Parallel systems often use fine-grain software handlers to integrate a network message into computation. Executing such handlers in parallel requires access synchronization around resources. Much as a monitor construct in a concurrent language protects accesses to a set of data structures, PDQ allows messages to include a synchronization key protecting handler accesses to a group of protocol resources. By simply synchronizing messages in a queue prior to dispatch, PDQ not only eliminates the overhead of acquiring/releasing synchronization primitives but also prevents busy-waiting within handlers. In this paper, we study PDQ's impact on software protocol performance in the context of fine-grain distributed shared memory (DSM) on an SMP cluster. Simulation results running shared-memory applications indicate that: (i) parallel software protocol execution using PDQ significantly improves performance in fine-grain DSM, (ii) tight integration of PDQ and embedded processors into a single custom device can offer performance competitive or better than an all-hardware DSM, and (iii) PDQ best benefits cost-effective systems that use idle SMP processors (rather than custom embedded processors) to execute protocols. On a cluster of 4 16-way SMPs, a PDQ-based parallel protocol running on idle SMP processors improves application performance by a factor of 2.6 over a system running a serial protocol on a single dedicated processor.\",\"PeriodicalId\":287867,\"journal\":{\"name\":\"Proceedings Fifth International Symposium on High-Performance Computer Architecture\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifth International Symposium on High-Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.1999.744362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Symposium on High-Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.1999.744362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel Dispatch Queue: a queue-based programming abstraction to parallelize fine-grain communication protocols
This paper proposes a novel queue-based programming abstraction, Parallel Dispatch Queue (PDQ), that enables efficient parallel execution of fine-grain software communication protocols. Parallel systems often use fine-grain software handlers to integrate a network message into computation. Executing such handlers in parallel requires access synchronization around resources. Much as a monitor construct in a concurrent language protects accesses to a set of data structures, PDQ allows messages to include a synchronization key protecting handler accesses to a group of protocol resources. By simply synchronizing messages in a queue prior to dispatch, PDQ not only eliminates the overhead of acquiring/releasing synchronization primitives but also prevents busy-waiting within handlers. In this paper, we study PDQ's impact on software protocol performance in the context of fine-grain distributed shared memory (DSM) on an SMP cluster. Simulation results running shared-memory applications indicate that: (i) parallel software protocol execution using PDQ significantly improves performance in fine-grain DSM, (ii) tight integration of PDQ and embedded processors into a single custom device can offer performance competitive or better than an all-hardware DSM, and (iii) PDQ best benefits cost-effective systems that use idle SMP processors (rather than custom embedded processors) to execute protocols. On a cluster of 4 16-way SMPs, a PDQ-based parallel protocol running on idle SMP processors improves application performance by a factor of 2.6 over a system running a serial protocol on a single dedicated processor.